首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
实际工程中,盾构隧道纵向接头是结构受力和变形的薄弱部位,针对盾构隧道纵向接头细部构造在地震作用下的受力特征,提出了一套由整体到局部的数值分析流程.首先建立基于纵向等效刚度梁的三维地层-结构时程分析模型,然后以该模型计算得到的纵向内力极值作为盾构隧道整环三维分析模型的外荷载,获取隧道最不利区域边界力,最后将边界力施加在盾构隧道纵向接头局部精细化分析模型之上,分析纵向接头细部构造受力特征;并以某综合管廊工程为背景对该方法进行具体阐述和讨论.研究结果表明:地震波横向激励时,盾构隧道纵向以往复的水平弯曲为主,而纵向激励时,则以往复的竖向弯曲和纵向拉压为主;在纵向张开量最大的局部区域,不论是轴向拉力工况还是纵向水平弯矩工况,该局部区域都处于受拉状态,两种工况对该局部区域受力模式不产生本质影响;当盾构隧道纵向最大张开量的局部区域受拉时,最大拉应力区均位于管片内侧手孔部位,最大压应力区则围绕螺栓孔成环形分布.  相似文献   

2.
为探究盾构隧道下沉或上浮时管片的受力情况,利用有限元软件ABAQUS建立三维精细化非线性有限元模型,分析在管片转动、错台等影响下连接螺栓、管片的应力发展规律。结果表明:在相同管片张开角条件下,连接螺栓的应力与变形曲率半径呈负相关。当变形曲率半径为3 000 m、张开角为0.002 0°时,首次出现螺栓屈服现象;当变形曲率半径为∞m、张开角为0.040 0°时,首次发生螺栓破坏;当变形曲率半径≤1 000 m时,不论张开角多大,所有螺栓均屈服。从环面方向对连接螺栓进行分析,可以看出环面上各螺栓的应力发展有3个阶段。当张开角增大或变形曲率半径减小时,管片部分区域的拉应力开始减小,相应阶段逐渐发展为塑性抗拉阶段。在小变形曲率半径(300~2 000 m)范围内,管片的最大主压应力水平更多取决于变形曲率半径的大小,而随转动角的增大其变化较小。  相似文献   

3.
盾构隧道管片衬砌内力及变形的影响因素分析   总被引:3,自引:0,他引:3  
盾构隧道管片衬砌的内力及变形受多种因素的影响。用弹性地基梁方法对一具体实例,从土层与衬砌两方面综合分析了影响衬砌内力及变形的各个因素,分析了管片的内力及变形随各参数变化的一些规律,得出了对衬砌内力及变形影响较大的参数。  相似文献   

4.
针对矩形基坑开挖对下卧隧道变形影响这类课题,基于Mindlin经典解,考虑了坑底残余应力及围护桩效应的影响,推导了基坑开挖卸荷作用在隧道处附加应力的计算公式.对于埋深超过1.5倍隧道外径的盾构隧道,通过在Pasternak模型上部增加一层弹簧层来考虑上覆土层对隧道的约束作用,建立起地基梁的挠度微分方程.采用有限差分的方法把隧道离散为独立的节点单元,从而求解出隧道纵向的竖向位移和水平位移,最后与有限元数值模拟、工程实测得到的隧道变形数据对比分析.研究表明:在考虑深埋盾构隧道与土体的相互作用时,相对于Pasternak模型方法,笔者方法更能反映两者之间真实的力学行为,得到的解析解更接近于数值解,与实测值吻合度也较高,证明了方法的合理性和优越性;另外,笔者方法省去了大量的建模工作,在设计方案时能够用于初步评估基坑开挖引起下卧盾构隧道纵向变形的影响.  相似文献   

5.
盾构隧道上方大面积加载或卸载会引起隧道结构发生纵向变形,过大的沉降或隆起会使隧道结构发生裂缝或是环缝张开,导致渗漏水甚至破坏。把隧道结构等效为处于土层中的弹性地基梁,利用Boussinesq解计算加(卸)载在隧道下卧土层中产生的附加应力,基于Winkler模型计算隧道结构的变形。结合上海某地铁隧道上方大面积卸载后加载的工程实例,计算隧道结构的纵向变形,判断结构的安全性,并用有限元计算验证理论计算公式的正确性。  相似文献   

6.
用与盾构隧道纵向变形性能相似的梁单元来模拟隧道结构的特性,建立盾构隧道纵向等效连续化模型,通过理论解析计算得到盾构隧道的等效拉压刚度和等效弯曲刚度。以软土地层中的盾构隧道为例,考虑地震裂度分别为7度和8度时,正弦位移行波在0°和45°方向上入射,采用反应变位法和动力有限元法,分别得到了隧道纵向上的最大拉、压力和弯矩以及螺栓和管片的受力、变形和接头螺栓的最大张开量。  相似文献   

7.
以上海轨道交通二号线西延段盾构隧道工程为背景,采用三维弹塑性有限元数值方法对盾构推进过程中管片结构进行模拟分析,获得了管片结构错台发生及发展的变化规律。进一步探讨了盾构千斤顶的顶力和螺栓的预紧力对错台大小及发展规律的影响,为盾构施工中减小错台,提高施工精度和质量,以及盾构隧道设计施工提供依据。  相似文献   

8.
采用杆系模型形成结构的总刚矩阵,分析时考虑了梁、柱的弯曲、剪切、轴向变形以及节点域的剪切变形;经过静力缩聚将其化为质点串模型,然后结合层模型的一些特点,得出等效层问剪切刚度,最后利用层问剪切模型的简化二阶分析方法得到了考虑二阶效应及节点剪切变形的层间剪切模型总刚矩阵。  相似文献   

9.
采用杆系模型形成结构的总刚矩阵,分析时考虑了梁、柱的弯曲、剪切、轴向变形以及节点域的剪切变形;经过静力缩聚将其化为质点串模型,然后结合层模型的一些特点,得出等效层间剪切刚度,最后利用层间剪切模型的简化二阶分析方法得到了考虑二阶效应及节点剪切变形的层间剪切模型总刚矩阵.  相似文献   

10.
同时考虑剪切变形和二阶效应来解析计算杆件的临界力,是求解变系数临界微分方程的难题。本研究采用有限元法推导了变截面单元刚度矩阵。采用三次Hermite插值函数和三次拉格朗日插值函数来计算单元内的弯曲变形和惯性矩变化。采用线性插值函数来计算单元内的剪切变形和截面面积变化。利用最小势能原理对总势能进行变分,系统给出了计入弯曲变形、剪切变形以及轴力二阶效应的变截面构件单元刚度矩阵。最后,用自编的有限元程序对算例进行验证。研究结果表明:本算法的计算精度较高,还可分析二阶位移放大系数以及变截面门式刚架立柱之间的支援作用。  相似文献   

11.
盾构隧道纵向地震响应分析   总被引:7,自引:2,他引:7  
为了探讨盾构隧道的纵向地震响应特性,采用地层一隧道整体三维有限元模型,对武汉长江越江盾构隧道的地震响应进行了分析,主要研究了合理的盾构隧道力学模型、隧道与地层之间的相互作用以及隧道的振动特性.通过隧道与地层的整体分析,得到了盾构隧道位移和应力的分布及其随时间的变化曲线.计算结果表明:压缩波引起的纵向拉、压应力和剪切波引起的扭曲变形是隧道抗震设计的关键.  相似文献   

12.
针对大直径盾构隧道分块数多、厚度与外径比值偏小的设计特点,采用相似模型试验研究了管片厚度对大直径盾构隧道结构受力及变形的影响。结果表明:增大管片厚度能够有效减小超载工况下管片的收敛变形,但随着管片厚度的增大,增加相同的管片厚度对减小收敛变形的作用逐渐减弱;管片厚度增大,可减轻拱顶和拱底部位的混凝土开裂问题,但隧道截面受力状态会由小偏心向大偏心转变,过大的管片厚度并不利于隧道结构受力;管片厚度的增加,对隧道两侧拱腰位置的内力影响最显著,拱顶和拱底次之,对其它部位内力影响并不明显。  相似文献   

13.
隧道收敛变形能够直观地反映出隧道结构的安全状况, 是影响地铁正常运营的重要因素。 依托南京扬子江大断面盾构隧道, 建立了单环管片精细化数值模型, 以现场接缝张开度的健康监测数据验证数值模型的准确性与可行性, 研究了纵缝张开与收敛变形的关系以及螺栓预紧力和管片拼装角度对收敛变形的影响。 研究结果表明: (1) 纵缝张开是隧道环向发生收敛变形的关键因素, 管片绕接缝处转动是收敛变形的主要形态; (2) 对于大变形情况 (>8‰D), 提高螺栓预紧力不建议成为控制收敛的主要手段; (3) 得到的 “纵缝张开-收敛变形” 拟合公式, 可用于近似估算圆砾及卵石全透水地层中不同拱腰收敛变形下的拱顶纵缝张开量。  相似文献   

14.
盾构隧道管片衬砌内力计算   总被引:5,自引:0,他引:5  
介绍了盾构隧道管片衬砌内力计算的方法。自由变形圆环法作为盾构隧道管片衬砌设计的传统方法,其计算结果虽安全但偏于保守。针对一工程实例.分别用自由变形圆环法和弹性地基梁法、弹性铰法进行了内力计算,并将后两种方法的结果与自由变形圆环法的结果进行了比较.得出了一些有助于盾构隧道衬砌设计的建议。  相似文献   

15.
以郑西铁路客运专线上的贺家庄隧道为例,研究了大断面黄土隧道中系统锚杆的受力状况,得出了拱部和边墙锚杆的受力特点,从径向位移的衰减规律和围岩压力分布形式两个角度分析了系统锚杆受力差异较大的原因,相关研究结论对黄土隧道的设计和施工具有参考价值和指导意义。  相似文献   

16.
不同结构无缝道岔的纵向力传递机理   总被引:3,自引:0,他引:3  
分析、比较了固定辙叉、长翼轨可动心轨和短翼轨可动心轨3种辙叉型式、限位器及间隔铁2种辙跟型式的无缝道岔纵向力传递机理及其对无缝道岔各部件受力和变形的影响.研究表明,辙叉采用长翼轨可动心轨、辙跟采用限位器是一种较合理的无缝道岔结构.  相似文献   

17.
以某地铁盾构隧道穿越建筑物浅基础的工程项目为背景,采用有限元模拟的方法,分析了隧道下穿浅基础的偏心比、埋深对浅基础及地表土体变形的影响规律。结果表明:隧道从浅基础下通过时,浅基础沉降呈线性分布,沉降最大值的位置只与隧道偏心比有关,而偏心比和埋深均对沉降最大值的量值有影响;浅基础存在使得地表横向沉降槽宽度较天然地基小,且沉降槽分布的范围与隧道埋深、偏心比有关,其中偏心比的影响较明显;浅基础倾斜值的大小主要与隧道偏心比有关,偏心比为零时浅基础基本无倾斜。据研究得出的地基变形的大小、范围以及变形规律,在隧道施工过程中可以选择合适的施工控制措施,保证上部构筑物的正常、安全运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号