首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

2.
In this paper,unipolar pulse (including positive pulse and negative pulse) and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N_2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H_2O_2,NO_2~-,andNO_3~-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species (OH(A),and O(3p)) in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min~(-1)of gas flow rate.The absorbance intensities of NO_2and N_2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species (N_2(C),OH(A),and O(3p)),nitrogen oxides (NO_2,NO,and N_2O),and higher production of aqueous H_2O_2,NO_2~-,andNO_3~-compared with both unipolar positive and negative discharges.  相似文献   

3.
In the paper, a hybrid gas–liquid dielectric barrier discharge (DBD) plasma system was set up to treat a methylene blue (MB) solution. The effects of the change of the carrier gas, the gas bubbling rate and different kinds of scavenger addition, including sodium carbonate (Na2CO3), para benzoquinone (p-BQ), triethylenediamine and sodium dihydrogen phosphate (NaH2PO4), on the MB decoloration were reviewed to clarify the critical active species for the dye decoloration in the DBD plasma system. The obtained results show that higher decoloration of the MB solution could be achieved when O2 was used as the carrier gas, which could be 100% after 20 min discharge treatment, and the result confirmed the crucial effect of O3 in the MB decoloration. Based on the experiments of the scavenger addition, it could be concluded that O2 and 1O2 were two other important reactive oxygen species (ROS) for the MB decoloration. The results of the higher chemical oxygen demand removal and faster disappearance of the characteristic peak of the MB from the UV–vis analysis under O2 bubbling conditions also proved the critical effect of the ROS formed by O2 on the MB decoloration.  相似文献   

4.
Cold atmospheric plasma jet is widely used in many fields due to the reactive oxygen species and low temperature for heat-sensitive products. This paper presents the inactivation of bacteria via a pulsed plasma jet with He/O2 mixed gas. To evaluate the disinfection performance, Staphylococcus aureus was used as an indicator bacteria for experiments. When the plasma jet dealt with agar plates spraying bacteria, it was found that mixed gas has a better performance than pure inert gas, indicated by the disinfection area. The increment of oxygen gas addition was beneficial to the disinfection ability of the plasma jet, while the gas had an opposite effect on the length of jet production. The experiments showed the efficacy of Staphylococcus aureus disinfection could reach up to 99.47% via a helium/oxygen (2%) plasma jet.  相似文献   

5.
The objective of this work is to contribute an understanding of the effects of electrons in the plasmas on the mass transfer of plasma species in aqueous solution by means of the numerical simulation based on a one-dimensional diffusion-reaction model. The plasma species are divided into two groups, i.e. electrons and the other species, and the mass transfer in the three scenarios has been simulated, including the systematic calculations of the depth distributions of five major reactive species, OH, O3, HO2 , O2-, and H2O2 . In the three scenarios, the particles considered to enter into aqueous solution are all the plasma species (the scenario I, where the mass transfer of plasma species is a result due to the synergy of the electrons and the other plasma species), the other species (the scenario II), and only electrons in plasma species (the scenario III), respectively. The detailed analyses on the difference between the depth distributions of each reactive species in these three scenarios show the following conclusions. The electrons play an important role in the mass transfer of plasma species in aqueous solution and the synergy of the electrons and the other plasma species (the electron-species synergy) presents its different effects on the mass transfer. The vast majority of H2O2 are generated from a series of the electron- related reactions in aqueous solution, which is hardly affected by the electron-species synergy. Compared to the results when only the electrons enter into the liquid region, the electron-species synergy evidently weakens the generation of O2-, O3 , and OH, but promotes to produce HO2 .  相似文献   

6.
The reactive ion etching of PECVD silicon nitride thin films has been investigated using SF6 plasma. Effects of variations of process parameters such as pressure (50–350 mTorr), RF power (50–250 W), gas flow rate (3–130 sccm) and additions of O2 and He (0–50%) in SF6, on the PECVD silicon nitride etch rate and selectivity to the AZ 1350J photoresist were examined. An etch rate of 1 μm/min has been obtained under the condition of 150 mTorr, 100 W and 60 sccm. Experimental results also indicated a maximum etch rate at approximately 30% O2 while addition of He showed only dilution effect. A nitride/photoresist selectivity ranging from 1 to 3:1 has been obtained.  相似文献   

7.
8.
A typical quinolones antibiotic ciprofloxacin(CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species(RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and p H values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers(isopropanol and CCl_4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP.Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS(H_2O_2 and O_3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization(+)-mass spectroscopy, and the possible degradation mechanism were presented.  相似文献   

9.
The basic characteristics of a N2-jet system coupled with a surface-ionization type ion source have been investigated at KUR-ISOL. The yields of transported activities and ionized ions have been measured under various conditions for both the He- and N2-jets. The effects of N2 gas upon the ionization and skimmer efficiency have been investigated. It was found that N2 gas has almost no effect upon the ionization efficiency, but causes poorer skimmer efficiency than He gas owing to the large opening angle of aerosol particles at the outlet of a capillary. A mixture of He and N2 gases was also tested.  相似文献   

10.
以正十二烷为稀释剂,研究了甲基膦酸二甲庚酯(DMHMP)萃取剂对硝酸介质中Zr(Ⅳ)的萃取性能。从3.0 mol/L HNO3中萃取Zr(Ⅳ)的分配比与萃取剂浓度及硝酸根浓度的关系表明:萃取过程中DMHMP以中性萃取剂形式与Zr(Ⅳ)配位,萃取反应方程式主要为: Zr4++2DMHMP+4NO-3=Zr(NO3)4·2DMHMP 随着硝酸浓度的增大,还会生成Zr(NO3)4·2DMHMP·2HNO3和Zr(NO3)4·2DMHMP·3HNO3。该反应为放热反应,降低温度有利于DMHMP对Zr(Ⅳ)的萃取。  相似文献   

11.
Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions. Such chemistries are often too large to be used in full reactor simulations and it is therefore desirable to construct reduced chemistry networks which mimic as closely as possible the behavior of the full chemistry but employ far fewer individual reactions and species. Constructed chemistries are available from the Quantemol database (QDB) and two approaches to constructing reduced chemistry from these chemistries based on (a) physical intuition and (b) sensitivity analysis of dominant reaction pathways, are explored. In doing this it is necessary to consider different pressure and power regimes. Reduced chemistry sets are presented for CF4 /O2/N2/H2, for which 396 reactions and 52 species are reduced to 71 reactions and 26 species, and for pure O2, for which 45 reactions and 10 species are reduced to 34 reactions.  相似文献   

12.
A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.  相似文献   

13.
为实现聚变堆氘氚燃料工艺气中痕量杂质气体组分的快速检测分析,需建立特殊的高精度在线气相色谱检测分析方法。以高纯氦作为载气,在不同的色谱柱温度和载气流速控制下,通过分子筛毛细管柱和PLOT-Q柱进行分离,采用放电氦离子化检测器(DID)进行检测,对氦中含量为1、10以及100 ppm的杂质标准气体进行检测分析。结果表明:在柱温为40 ℃、流速为15~20 mL/min实验条件下,分子筛柱在160 s内能够实现H2、O2、N2、CH4和CO全部分离,且柱效较高,响应值的重复性较好,H2和O2之间的分离度高于1.5,实现了完全分离;在柱温为40 ℃、流速为20 mL/min时,PLOT-Q柱分离CO2组分效果最佳。  相似文献   

14.
Efficient sterilization by a plasma photocatalytic system(PPS) requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we report that a PPS constructed from a needle array corona discharge and Au/TiO2 plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli(E.coli) and alleviate formation of the discharge pollutant O3.At 6 kV,the combination of corona disc...  相似文献   

15.
龙磊  李虎林  周建跃 《同位素》2016,29(1):48-52
轻同位素的工业化富集主要采用精馏法,如H2、O2、N2、CO等,这些双原子分子同位素气体在富集中后期,会受到其他同位素干扰而无法得到高丰度的同位素,需要在精馏级联中间增加反应转化装置,排除同位素干扰。在催化剂的作用下,气体分子之间发生反应,同位素原子得到重新组合生成单一同位素气体,继续分离得到高丰度的同位素气体。本文对同位素气体反应及采用的催化剂进行介绍,并着重介绍了C同位素交换反应的平衡常数、反应机理等特性。  相似文献   

16.
The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission. However, the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear. In this work, an Ar plasma in a long glass tube which emits intense green aurora light is investigated. With the long glass tube, it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air. It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow. The green emission disappears when the traces amount of O2 or N2 (about 0.05%–0.07%) is added to Ar. This is because the O2 molecules deactivate the upper state O(1S), which results in the decrease of the green emission. On the other hand, when N2 is added, Ar metastable atoms are quenched by N2, which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity. The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 kHz. More importantly, it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume. Thus, the green emission is not driven electrically. All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics, laser physics and other application areas.  相似文献   

17.
A key problem in CO_2 conversion by thermal plasma is suppressing the inverse reactions,CO?+?O?→?CO_2 and CO?+?0.5O_2?→?CO_2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO_2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused.A CO_2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations.  相似文献   

18.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

19.
Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA·cm −2 to 4 mA·cm −2 . The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N 2 ]) generation. It is observed that in an N 2 -H 2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H 2 in the mixture at 3 mbar pressure and current density of 4 mA·cm −2  相似文献   

20.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr2+的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr2+的分配比(DSr)随HNO3浓度(c(HNO3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr2+浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO3)2•3Me-TODGA和Sr(NO3)2•2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol•K)和-128.4 J/(mol•K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr2+的分配比不到TODGA的1/5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号