首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
This paper presents landslide susceptibility analysis around the Cameron Highlands area, Malaysia using a geographic information system (GIS) and remote sensing techniques. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten landslide occurrence factors were selected as: topographic slope, topographic aspect, topographic curvature and distance from drainage, lithology and distance from lineament, soil type, rainfall, land cover from SPOT 5 satellite images, and the vegetation index value from SPOT 5 satellite image. These factors were analyzed using an advanced artificial neural network model to generate the landslide susceptibility map. Each factor’s weight was determined by the back-propagation training method. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights, and finally, the landslide susceptibility map was generated using GIS tools. The results of the neural network model suggest that the effect of topographic slope has the highest weight value (0.205) which has more than two times among the other factors, followed by the distance from drainage (0.141) and then lithology (0.117). Landslide locations were used to validate the results of the landslide susceptibility map, and the verification results showed 83% accuracy. The validation results showed sufficient agreement between the computed susceptibility map and the existing data on landslide areas.  相似文献   

2.
This paper presents landslide hazard analysis at Cameron area, Malaysia, using a geographic information system (GIS) and remote sensing data. Landslide locations were identified from interpretation of aerial photographs and field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence are topographic slope, topographic aspect, topographic curvature, and distance to rivers, all from the topographic database; lithology and distance to faults were taken from the geologic database; land cover from TM satellite image; the vegetation index value was taken from Landsat images; and precipitation distribution from meteorological data. Landslide hazard area was analyzed and mapped using the landslide occurrence factors by frequency ratio and bivariate logistic regression models. The results of the analysis were verified using the landslide location data and compared with the probabilistic models. The validation results showed that the frequency ratio model (accuracy is 89.25%) is better in prediction of landslide than bivariate logistic regression (accuracy is 85.73%) model.  相似文献   

3.
用光学遥感数据和地理信息系统(GIS)分析了马来西亚Selangor地区的滑坡灾害。通过遥感图像解译和野外调查,在研究区内确定出滑坡发生区。通过GIS和图像处理,建立了一个集地形、地质和遥感图像等多种信息的空间数据库。滑坡发生的因素主要为:地形坡度、地形方位、地形曲率及与排水设备距离;岩性及与线性构造距离;TM图像解译得到的植被覆盖情况;Landsat图像解译得到的植被指数;降水量。通过建立人工神经网络模型对这些因素进行分析后得到滑坡灾害图:由反向传播训练方法确定每个因素的权重值,然后用该权重值计算出滑坡灾害指数,最后用GIS工具生成滑坡灾害图。用遥感解译和野外观测确定出的滑坡位置资料验证了滑坡灾害图,准确率为82.92%。结果表明推测的滑坡灾害图与滑坡实际发生区域足够吻合。  相似文献   

4.
Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia   总被引:15,自引:0,他引:15  
This paper deals with landslide hazards and risk analysis of Penang Island, Malaysia using Geographic Information System (GIS) and remote sensing data. Landslide locations in the study area were identified from interpretations of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for landslide hazard analysis. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide susceptibility was analyzed using landslide-occurrence factors employing the probability-frequency ratio model. The results of the analysis were verified using the landslide location data and compared with the probabilistic model. The accuracy observed was 80.03%. The qualitative landslide hazard analysis was carried out using the frequency ratio model through the map overlay analysis in GIS environment. The accuracy of hazard map was 86.41%. Further, risk analysis was done by studying the landslide hazard map and damageable objects at risk. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.  相似文献   

5.
The aim of this study is to evaluate the landslide hazards at Selangor area, Malaysia, using Geographic Information System (GIS) and Remote Sensing. Landslide locations of the study area were identified from aerial photograph interpretation and field survey. Topographical maps, geological data, and satellite images were collected, processed, and constructed into a spatial database in a GIS platform. The factors chosen that influence landslide occurrence were: slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, land cover, vegetation index, and precipitation distribution. Landslide hazardous areas were analyzed and mapped using the landslide-occurrence factors by frequency ratio and logistic regression models. The results of the analysis were verified using the landslide location data and compared with probability model. The comparison results showed that the frequency ratio model (accuracy is 93.04%) is better in prediction than logistic regression (accuracy is 90.34%) model.  相似文献   

6.
Quantitative landslide susceptibility mapping at Pemalang area,Indonesia   总被引:3,自引:0,他引:3  
For quantitative landslide susceptibility mapping, this study applied and verified a frequency ratio, logistic regression, and artificial neural network models to Pemalang area, Indonesia, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of aerial photographs, satellite imagery, and field surveys; a spatial database was constructed from topographic and geological maps. The factors that influence landslide occurrence, such as slope gradient, slope aspect, curvature of topography, and distance from stream, were calculated from the topographic database. Lithology was extracted and calculated from geologic database. Using these factors, landslide susceptibility indexes were calculated by frequency ratio, logistic regression, and artificial neural network models. Then the landslide susceptibility maps were verified and compared with known landslide locations. The logistic regression model (accuracy 87.36%) had higher prediction accuracy than the frequency ratio (85.60%) and artificial neural network (81.70%) models. The models can be used to reduce hazards associated with landslides and to land-use planning.  相似文献   

7.
The purpose of this study was to develop techniques for landslide susceptibility using artificial neural networks and then to apply these to the selected study area at Janghung in Korea. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use. Thirteen landslide-related factors were extracted from the spatial database. These factors were then used with an artificial neural network to analyze landslide susceptibility. Each factor's weight was determined by the back-propagation training method. Five different training sets were applied to analyze and verify the effect of training. Then the landslide susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. Landslide locations were used to verify results of the landslide susceptibility maps and to compare them. The artificial neural network proved to be an effective tool for analyzing landslide susceptibility.  相似文献   

8.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

9.
The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides.  相似文献   

10.
Statistical analysis of landslide susceptibility at Yongin, Korea   总被引:35,自引:1,他引:35  
The aim of this study is to evaluate the susceptibility of landslides at Yongin, Korea, using a geographic information system (GIS). Landslide locations were identified in the Yongin area from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, timber cover, and geology. These data were collected and constructed into a spatial database using GIS. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, age, diameter, and density of timber were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM satellite image. Landslide susceptibility was analyzed using the landslide occurrence factors by probability and logistic regression methods. The results of the analysis were verified using the landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide location. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy. The results can be used to reduce associated hazards, and to plan land use and construction.  相似文献   

11.
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.  相似文献   

12.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

13.
This study evaluates the susceptibility of landslides in the Lai Chau province of Vietnam using Geographic Information System (GIS) and remote sensing data to focus on the relationship between tectonic fractures and landslides. Landslide locations were identified from aerial photographs and field surveys. Topographic, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS data and image-processing techniques. A scheme of the tectonic fracturing of crust in the Lai Chau region was established. Lai Chau was identified as a region with many crustal fractures, where the grade of tectonic fracture is closely related to landslide occurrence. The influencing factors of landslide occurrence were: distance from a tectonic fracture, slope, aspect, curvature, soil, and vegetative land cover. Landslide prone areas were analyzed and mapped using the landslide occurrence factors employing the probability–frequency ratio model. The results of the analysis were verified using landslide location data and showed 83.47% prediction accuracy. That emphasized a strong relationship between the susceptibility map and the existing landslide location data. The results of this study can form a basis stable development and land use planning for the region.  相似文献   

14.
A study of landslides in Youngin, Janghung and Boeun, Korea, using the geographic information system (GIS) validates a spatial probabilistic model for landslide susceptibility analysis. Locations were identified from aerial photographs, satellite images and field surveys. Topography, soil-type, forest-cover and land-cover maps were constructed from spatial data sets. Landslide occurrence is influenced by 13 factors, evidence for which was extracted from the database with the frequency ratio of each factor computed. Landslide susceptibility maps use frequency ratios derived not only from data for each area but also ratios, one from the probabilistic model, calculated from the other two areas (nine maps in all) as a cross-check of method validity. For validation, analytical results were compared in each study area with actual landslide locations: Boeun based on its frequency ratio showed the best accuracy (82.49%) whereas Janghung based on the Boeun frequency ratio showed the worst (69.53%).  相似文献   

15.
This study is aimed at the evaluation of the hazard of soil erosion and its verification at Boun, Korea, using a Geographic Information System (GIS) and remote sensing. Precipitation, topographic, soil, and land use data were collected, processed, and constructed into a spatial database using GIS and remote sensing data. Areas that had suffered soil erosion were analysed and mapped using the Universal Soil Loss Equation (USLE). The factors that influence soil erosion are rainfall erosivitiy (R) from the precipitation database, soil erodibility (K) from the soil database, slope length and steepness (LS) from the topographic database, and crop and management (C) and conservation supporting practices (P) from the land use database. Land use was classified from Landsat Thematic Mapper satellite images. The soil erosion map verified use of the landslide location data. Landslide locations were identified in the Boun area from interpretation of aerial photographs and field surveys.  相似文献   

16.
The aim of this study was to validate an artificial neural network model at Youngin, Janghung, and Boeun, Korea, using the geographic information system (GIS). The factors that influence landslide occurrence, such as the slope, aspect, curvature, and geomorphology of topography, the type, material, drainage, and effective thickness of soil, the type, diameter, age, and density of forest, distance from lineament, and land cover were either calculated or extracted from the spatial database and Landsat TM satellite images. Landslide susceptibility was analyzed using the landslide occurrence factors provided by the artificial neural network model. The landslide susceptibility analysis results were validated and cross-validated using the landslide locations as study areas. For this purpose, weights for each study area were calculated by the artificial neural network model. Among the nine cases, the best accuracy (81.36%) was obtained in the case of the Boeun-based Janghung weight, whereas the Janghung-based Youngin weight showed the worst accuracy (71.72%).  相似文献   

17.
基于GIS与ANN模型的地震滑坡易发性区划   总被引:1,自引:0,他引:1  
基于遥感数据、地理信息系统(GIS)技术和人工神经网络(ANN)模型,开展地震滑坡易发性区划研究.2010年4月14日玉树地震后,基于航片与卫星影像目视解译,并辅以野外调查的方法,在地震区圈定了2036处地震诱发滑坡.选择高程、坡度、坡向、斜坡曲率、坡位、与水系距离、地层岩性、与断裂距离、与公路距离、归一化植被指数(NDVI)、与同震地表破裂距离、地震动峰值加速度(PGA)共12个因子作为地震滑坡易发性评价因子.这些因子均是应用GIS技术与遥感影像处理技术,基于地形数据、地质数据、遥感数据得到.训练样本中的滑动样本有两组,一组是滑坡区整个单滑坡体的质心位置,另一组是滑坡滑源区滑前的坡体高程最高的位置.应用这12个影响因子,分别采用这两组评价样本,基于ANN模型建立地震滑坡易发性索引图,基于GIS工具建立地震滑坡易发性分级图.分别应用训练样本中滑坡分布的点数据去检验各自的结果正确率,正确率分别为81.53%与81.29%,表明ANN模型是一种高效科学的地震滑坡易发性区划模型.  相似文献   

18.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

19.
The purpose of this study is to assess the susceptibility of landslides in parts of Western Ghats, Kerala, India, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analysis of the topographical maps. The landslide triggering factors are considered to be slope angle, slope aspect, slope curvature, slope length, distance from drainage, distance from lineaments, lithology, land use and geomorphology. ArcGIS version 8.3 was used to manipulate and analyse all the collected data. Probabilistic-likelihood ratio was used to create a landslide susceptibility map for the study area. The result was validated using the Area under Curve (AUC) method and temporal data of landslide occurrences. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. As the result, the success rate of the model was (84.46%) and the prediction rate of the model was (82.38%) shows high prediction accuracy. In the reclassified final landslide susceptibility zone map, 5.68% of the total area is classified as critical in nature. The landslide susceptibility map thus produced can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

20.
The present study deals with the preparation of a landslide susceptibility map of the Balason River basin, Darjeeling Himalaya, using a logistic regression model based on Geographic Information System and Remote Sensing. The landslide inventory map was prepared with a total of 295 landslide locations extracted from various satellite images and intensive field survey. Topographical maps, satellite images, geological, geomorphological, soil, rainfall and seismic data were collected, processed and constructed into a spatial database in a GIS environment. The chosen landslide-conditioning factors were altitude, slope aspect, slope angle, slope curvature, geology, geomorphology, soil, land use/land cover, normalised differential vegetation index, drainage density, lineament number density, distance from lineament, distance to drainage, stream power index, topographic wetted index, rainfall and peak ground acceleration. The produced landslide susceptibility map satisfied the decision rules and ?2 Log likelihood, Cox &; Snell R-Square and Nagelkerke R-Square values proved that all the independent variables were statistically significant. The receiver operating characteristic curve showed that the prediction accuracy of the landslide probability map was 96.10%. The proposed LR method can be used in other hazard/disaster studies and decision-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号