首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,光催化技术被广泛应用于环境和能源领域.其中,g-C_3N_4因化学稳定性和热稳定性好、能带结构易调控而成为一种有前景的可见光光催化剂.然而,g-C_3N_4的电子-空穴对易复合,导致其不能充分利用太阳光,光催化效率并不理想.本文通过实验与理论结合的方法设计并制备了具有独特电子结构的Mg/O共同修饰的无定形氮化碳(记为MgO-CN),以30mg/L的四环素盐酸溶液(TC)作为目标污染物评价了其光催化性能.经X射线衍射、扫描电镜、透射电镜、N_2物理吸附、紫外-可见光谱等表征手段分析表明,MgO-CN样品(002)晶面的衍射峰强度随着MgO含量增加而减弱,CN趋向于无定形化.同时,MgO-CN样品的可见光吸收边带发生红移,呈现出更强的可见光吸收能力.此外,Mg原子和O原子共同修饰的独特电子结构可以通过C→O←Mg的电子传递路线在O原子周围产生局域电子,从而抑制电子-空穴的复合.光催化降解TC的实验结果表明,在可见光照射后,含有1.2 wt%MgO的复合样品MgO-CN-1.2具有最佳光催化活性,TC降解效率为82.0%,比g-C_3N_4的光催化效率(23.5%)高出58.5%,且光催化降解过程符合准一级动力学,MgO-CN-1.2的反应速率常数(0.01018 min~(–1))是g-C_3N_4(0.00205 min~(–1))的5倍.自由基捕获测试实验表明,g-C_3N_4和Mg O-CN-1.2样品均可以产生·O_2~–自由基和·OH自由基,但是Mg O-CN-1.2样品的·O_2~–和·OH信号更强.这是由于Mg O-CN-1.2样品可以吸收更大范围的可见光用于激发电子,同时结合理论计算证明,MgO-CN内部电子在O原子周围汇集,形成的电子定向传输通道对催化剂表面的电子-空穴复合有抑制作用,更加有利于电子的迁移而诱导O_2生成·O_2~–.由于Mg O-CN-1.2和g-C_3N_4的价带位置分别位于1.47和1.60 eV,此价带上的h~+不能与H_2O和OH~–直接反应生成·OH,而是由生成的·O_2~–再与H~+和e~–按照O_2→·O_2→H_2O_2→·OH的反应途径生成·OH.本文最后分析,MgO-CN复合物参与反应的主要活性物种为·O_2~–,·OH和h~+光催化降解污染物的反应机理.其中,·O_2~–对光催化降解TC的贡献最大,为最主要的活性物质.本文工作提供了一种新的策略来改变氮化碳的电子结构,对提高其催化性能具有积极意义.  相似文献   

2.
石墨相氮化碳(g-C_3N_4)具有独特的二维层状结构和合适的能带结构,因而在可见光催化领域广受关注.尤其是在可见光去除环境污染物领域,得到了较为充分的研究与应用.然而g-C_3N_4去除环境污机理的反应机理尚不明确.因此,本文采用理论计算与实验高度结合的研究方法,以光催化NO去除为例,深入阐述了光照下g-C_3N_4表面活性氧物种(ROS)的生成及转化过程,及其介导下的NO光催化氧化机理.X射线衍射结果表明,g-C_3N_4是三嗪环层内聚合后层层堆叠而成,并由红外光谱确定了其表面的官能团类型.该结构经扫描电镜和透射电镜得到了进一步的验证.采用光致激发谱和紫外可见漫反射光谱等实验表征与密度泛函理论计算结合的光电性质分析,我们发现,g-C_3N_4在可见光下具有一定的响应,这为其在光催化去除NO中奠定了基础.同时,其价带位置过高,无法自行产生氧化性较强的羟基自由基(.OH).电子自旋共振技术结果表明g-C_3N_4在光照下能捕获到·O_2~-和·OH两种活性自由基.采用反应路径计算发现,·OH是由·O_2~-在导带上逐步得到电子被还原而生成,其中的速率控制步骤是H_2O_2的解离.因此,促进O_2分子的吸附和活化和克服H_2O_2解离的反应活化能是产生·OH和提升g-C_3N_4光催化氧化活性的关键.采用原位红外光谱技术对g-C_3N_4上NO的氧化去除过程进行了表征,发现其主要中间产物为NO_2,主要终产物为NO_2~-和NO_3~-,采用反应路径计算对该反应过程进行了理论模拟,发现在·O_2~-介导下,最高反应活化能为0.66 eV,而在·OH介导下,该活化能降低至0.46 eV,表明·OH的氧化性要明显强于·O_2~-.总之,本文采用一种可行的、高度结合的实验与计算手段研究了g-C_3N_4上ROS的生成及转化过程及其对NO去除的反应历程,在原子尺度揭示了该反应的机理,加深了对ROS在光催化环境污染物降解过程中作用的理解.  相似文献   

3.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

4.
近年来,光催化技术作为一种"绿色"技术,在解决环境问题和能源危机等方面有着广泛的应用.新型可见光响应的半导体光催化材料g-C_3N_4具有二维(2D)纳米片结构,合适的禁带宽度(Eg=2.7 eV),优异的化学稳定性和低廉成本得到广泛的研究.但是,g-C_3N_4光催化剂本身的光生电子-空穴对复合几率高以及可见光响应范围窄等缺点,使其在光催化领域应用中具有一定的局限性.因此,提高g-C_3N_4半导体材料的光催化活性成为近年的研究热点.众所周知,Z型光催化体系的构筑不仅使材料具有较强的氧化还原能力而且有利于其光生电子-空穴的有效分离.但传统Z型光催化体系由于贵金属的引入、复杂的反应体系限制了其在实际领域中的应用.因此,构筑无电子介体的直接Z型光催化体系成为光催化领域的研究热点之一.与块状材料相比,零维(0D)量子点材料具有带隙可调性,可见光和近红外区域的强光收集能力等性能,在光催化领域具有广阔的应用前景.MoS_2量子点具有优异的光学和电子性能,因此,在催化、荧光检测、生物成像领域有重要的应用价值.我们结合水热和微乳溶液法合成了直接Z型g-C_3N_4/MoS_2 QDs(2D/0D)复合光催化材料,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、原子力显微镜(AFM),透射电子显微镜(TEM)以及紫外可见漫反射光谱(UV-vis)等表征方法对该催化剂的结构特征、微观形貌和光学性能进行分析.并研究了g-C_3N_4/MoS_2 QDs复合材料在可见光下的光催化性能.XRD,XPS结果表明,复合材料由g-C_3N_4,MoS_2组成.TEM和高斯分布结果表明,MoS_2 QDs具有良好的分散性,其尺寸小于5 nm,g-C_3N_4纳米片由具有皱纹和不规则折叠结构的薄层组成,在g-C_3N_4/MoS_2 QDs复合材料中可以看到少量的MoS_2量子点沉积在片状g-C_3N_4的表面上.光催化性能测试结果进一步表明,7%MoS_2 QDs/g-C_3N_4在可见光下具有优异的光催化性能:可见光照射12 min内,RhB的降解效率可达100%,降解速率常数是纯g-C_3N_4的8.8倍.为了进一步研究g-C_3N_4/MoS_2异质结光催化剂的光催化机理,用对苯醌、乙二胺四乙酸二钠和丁醇进行了自由基捕捉剂实验.结果表明,超氧自由基在降解有机染料过程中起主要作用,羟基自由基和空穴在增强的光催化性能中发挥相对较小的作用.通过光电流测试、材料价带导带位置计算以及·O_2~-和·OH定量实验结果并结合文献分析认为,MoS_2量子点和g-C_3N_4之间优良的界面接触以及由直接Z型结构产生的光生电荷载体的有效分离使其光催化性能得到显著提升.  相似文献   

5.
通过高温液相生长法在氧化铟锡玻璃上构筑了g-C_3N_4薄膜电极,该电极作为阳极在H_2O_2辅助作用下光电催化降解亚甲基蓝.研究结果表明,g-C_3N_4与H_2O_2在可见光下存在协同作用;在外加电压1.5 V,50 mmol L-1H_2O_2条件下,亚甲基蓝的降解率在2 h内由35.92%提高至53.43%.系统研究了H_2O_2浓度、外加电压、初始p H对亚甲基蓝降解的影响.采用电子顺磁共振自旋捕捉技术和自由基猝灭实验等方法证实了·O2-和·OH为光电催化过程中的主要氧化物种,提出了可能的催化反应机理,在外加H_2O_2条件下,g-C_3N_4受可见光激发生成的光生电子被O2或H_2O_2捕获,最终生成·OH,从而将有机染料降解.g-C_3N_4薄膜电极表现出较高的稳定性.  相似文献   

6.
石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe~(2+)和Fe~(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe~(3+)和g-C_3N_4的LUMO轨道上的转移降低了电子-空穴对的复合;(2)Fe_3O_4均匀分布在g-C_3N_4上,对于H_2O_2的吸附提供了有利的高比表面积;(3)Fe_3O_4和g-C_3N_4之间的界面相互作用使得Fe_3O_4的稳定性提高.通过降解RhB的动力学研究,得到反应速率为0.02 min~(–1),属准一级反应.分析检测结果表明,光-芬顿反应后,RhB分子被彻底矿化降解,没有中间产物生成,最终降解为CO_2和水.同时,通过对辣根过氧化物酶(HRP)模拟催化进行测试,以3,3',5,5'-四甲基联苯胺盐酸盐(TMB)作为基质,同时添加双氧水和Fe_3O_4/g-C_3N_4,在pH值为4.5条件下,TMB可以被有效氧化.实验表明,Fe_3O_4/g-C_3N_4添加量为25 mg/ml时,对TMB氧化性能最佳.复合催化剂还用于多巴胺的催化氧化反应.结果表明,多巴胺的氧化反应速率常数为1.21 min~(–1),属一级动力学反应.总之,复合材料提高了Rh B的光催化降解活性和稳定性;对TMB和HRP亲和性好,表现出高的类过氧化酶反应活性;有效的多巴胺氧化反应表明其有望用于生物基氧化反应中.实验结果表明,本文发展的Fe_3O_4/g-C_3N_4复合材料为其他类型复合材料的制备与应用提供了新的思路.  相似文献   

7.
石墨型氮化碳(g-C_3N_4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C_3N_4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C_3N_4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C_3N_4异质结复合体是常用的有效改善g-C_3N_4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO_2/Fe2O3,Zn O/BiVO_4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO_2和g-C_3N_4的紧密连接,以促进光生电子由g-C_3N_4向TiO_2的迁移、改善光生载流子的分离,进而更加显著地提高g-C_3N_4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO_2/g-C_3N_4纳米复合体,并研究了P–O功能桥对TiO_2/g-C_3N_4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C_3N_4与适量的纳米TiO_2复合,尤其是g-C_3N_4与适量P–O桥连TiO_2的复合可进一步提高g-C_3N_4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C_3N_4的光生电子由g-C_3N_4向TiO_2转移,极大地促进了g-C_3N_4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C_3N_4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

8.
采用研磨-煅烧技术制备不同g-C_3N_4含量的g-C_3N_4/TiO_2复合粉末催化剂,以模拟太阳光光催化降解气相间二甲苯实验评价催化剂活性.结果表明:当g-C_3N_4含量为60%时,g-C_3N_4/TiO_2-60的降解效果最佳.以此为代表,采用溶胶-凝胶-浸渍-提拉方法 ,制备光纤负载g-C_3N_4/TiO_2薄膜光催化材料,应用于气相间二甲苯的降解.通过X射线粉末衍射(XRD)、紫外可见漫反射(UV-Vis/DRS)及高分辨透射电镜(TEM)对催化剂进行表征.采用光电化学实验、自由基捕获实验探究其光催化机理.结果表明:模拟太阳光光照120min后,光纤负载g-C_3N_4/TiO_2-60薄膜光催化材料对气相间二甲苯的降解率为94%,经过3次循环使用后降解活性无明显变化.光在光纤中的有效传播、光生电子和空穴的快速产生、迁移以及反应体系中形成的·O2-,·OH和hVB+3种活性物种是光纤负载薄膜催化剂实现高效降解气相间二甲苯的原因.  相似文献   

9.
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C_3N_4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C_3N_4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C_3N_4光催化效率.在过去几年中,TiO_2,Bi_2WO_6,WO_3,Bi_2MoO_6,Ag_3PO_4和ZnO已经被成功证实可以与g-C_3N_4耦合而构造Z型光催化剂体系.其中,WO_3/g-C_3N_4光催化剂体系,具有可见光活性的WO_3导带中的光生电子和g-C_3N_4价带中的光生空穴容易实现Z型复合,从而保留了WO_3的强氧化能力和g-C_3N_4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C_3N_4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)_2,WS_2和MoS_2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)_x助催化剂修饰g-C_3N_4/WO_3耦合形成的Z型体系,开发出廉价高效的WO_3/g-C_3N_4/Ni(OH)_x三元产氢光催化体系.在该三元体系中,Ni(OH)_x和W0_3分别用于促进g-C_3N_4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C_3N_4的光生电子在Ni(OH)_x富集并应用于光催化产氢,而高能的WO_3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO_3纳米棒/g-C_3N_4,并采用原位光沉积方法将Ni(OH)_x纳米颗粒负载到WO_3/g-C_3N_4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO_3为有缺陷的正交晶系的晶体,直径为20-40纳米棒且均匀嵌入在g-C_3N_4纳米片上;Ni(OH)_x为Ni(OH)_2与Ni的混合物,其Ni(OH)_2与Ni的摩尔比为97.4:2.6,Ni(OH)_x粒径为20-50 nm且均匀分散在g-C_3N_4纳米片上,WO_3/g-C_3N_4/Ni(OH)_x催化剂界面之间结合牢固,其中WO_3和Ni(OH)_x均匀分布在g-C_3N_4上.紫外-可见漫反射表征结果表明,随着缺陷WO_3的负载量增加,复合体系的吸收边与g-C_3N_4相比产生明显的红移,而加入Ni(OH)_x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO_3和Ni(OH)_x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO_3和Ni(OH)_x能降低g-C_3N_4的析氢过电位,从而提高光催化剂表面的产氢动力学.·O_2~-和·OH电子自旋共振谱表明成功形成了WO_3/g-C_3N_4耦合Z型体系.光催化分解水产氢的性能测试表明,20%WO_3/g-C_3N_4/4.8%Ni(OH)_x产氢效率最高(576μmol/(g·h)),分别是g-C_3N_4/4.8%Ni(OH)_x,20%WO_3/g-C_3N_4和纯g-C_3N_4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)_x助催化剂修饰和g-C_3N_4/WO_3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.  相似文献   

10.
采用浸渍法成功地将硅钨酸(SiW_(12))负载到g-C_3N_4表面,制备出一种新型的SiW_(12)/g-C_3N_4复合光催化剂.通过X-射线衍射(XRD)、红外光谱(FT-IR)、扫描电子显微镜(SEM)、荧光光谱(PL)和紫外-可见分光光度计(UV-Vis)等测试手段对其结构和性能进行表征.光催化实验表明,在可见光照射下(λ420nm),SiW_(12)/g-C_3N_4复合材料表现出比纯gC3N4更高的光催化性能.其中,SiW_(12)/g-C_3N_4(质量比为1∶3)复合材料具有最好的光催化活性,在可见光下辐照120 min时,RhB的脱色率达98.0%.若加入H_2O_2(2 mL,质量分数为30%)进行修饰,仅在可见光下辐照24min,RhB的脱色率就达到97.7%.SiW_(12)/g-C_3N_4复合材料光催化活性的提高归因于光生电子-空穴对的有效分离.此外,由H_2O_2分解产生的氢氧自由基(·OH)也起到了至关重要的作用.  相似文献   

11.
有毒重金属离子Cr(Ⅵ)广泛应用于制革、电镀、印刷、颜料和抛光等行业,因而成为地表水和地下水中常见的污染物.光催化还原Cr(Ⅵ)为Cr(Ⅲ)利用可持续能源太阳能,费用低且没有二次污染问题,已经受到广泛关注.g-C_3N_4是一种稳定性好且能吸收可见光的优异光催化材料,但也具有比表面积小及电子和空穴容易复合等缺点.为进一步提高g-C_3N_4的光催化效率,人们合成了各种新型复合材料,如g-C_3N_4/Bi2WO6,g-C_3N_4/SiW11和g-C_3N_4/Zn_3V_2O_7(OH)_2(H2O)_2等.本文通过非常简便的球磨-煅烧法制备了金属-有机骨架材料MIL-100(Fe)与类石墨结构氮化碳(g-C_3N_4)的异质结结构(MG-x,x_=5%,10%,20%和30%,代表MIL-100(Fe)占复合物的质量分数),并对复合材料进行了粉末X射线衍射(PXRD)、红外光谱(FTIR)、热重(TGA)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DR)和荧光光谱(PL)等表征.实验研究了MG-x在模拟太阳光照射下光催化还原Cr(Ⅵ)和降解双氯芬酸钠的性能,考察了空穴捕捉剂(乙醇、柠檬酸、草酸和双氯芬酸钠)和pH值(_2~–8)对光催化还原Cr(Ⅵ)效率的影响.实验结果表明,PXRD谱图显示复合物的衍射峰位置均与MIL-100(Fe)及g-C_3N_4的峰位置相吻合,球磨和煅烧后无新衍射峰产生.TEM图片证明复合物中g-C_3N_4附着在MIL-100(Fe)表面.光照80 min后,MG-x复合物的还原效率均大于92%,高于MIL-100(Fe)(75.6%)和g-C_3N_4(79.8%)的还原效率.其中,MG-20%的光催化活性最高,还原效率达到97.0%,且还原Cr(Ⅵ)的速率分别是MIL-100(Fe)的3.08倍和g-C_3N_4的2.31倍.随着MIL-100(Fe)含量的增加,复合物的光催化活性先增后减.这是因为MIL-100(Fe)含量的增加不仅有利于电荷的转移,也有利于可见光的利用,然而过多的MIL-100(Fe)可能会影响异质结的质量,不利于电荷的转移.随着溶液pH值从2提高到8,还原效率从98%降低到9%.这是因为在酸性条件下H+浓度高有利于Cr(Ⅵ)还原为Cr(Ⅲ),而当pH6时,Cr3+与OH–形成Cr(OH)_3沉淀附着在催化剂表面,影响对光的吸收,降低了光催化效率.当反应体系中加入乙醇、柠檬酸和草酸时,光催化速率提高,而加入双氯芬酸钠后光催化速率未见提高,这是由于小分子链烃有机物容易捕捉光生空穴,而双氯芬酸钠不能有效捕捉MG-20%产生的光生空穴.电化学测试证明g-C_3N_4的光生电子可转移到MIL-100(Fe)的导带,复合物提高了光生电子和光生空穴的分离效率,从而提高了光催化还原Cr(Ⅵ)的活性.同时,在加入H2O2的条件下,MG-20%在50 min内光催化降解双氯芬酸钠的效率达到100%.MG-20%循环使用5次后,光催化效率没有明显降低,光催化剂的XRD谱没有发生明显变化,证明其具有很好的稳定性.综上,本研究提供了一种具有应用前景的高效MOF/g-C_3N_4复合物光催化剂.  相似文献   

12.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

13.
电化学或光电化学半导体催化剂广泛应用于降解污水中的有机与无机污染物,有望实现低能耗且高效的污染物降解.目前,已有多种异质结半导体光催化剂的研究报道,并且大多数的研究结果显示催化剂活性有明显提高,但仍存在着光激发后电子与空穴的复合问题.光电化学系统的构建可减少电子与空穴的复合,因光催化阳极与光催化阴极之间费米能级的不同,在两极之间形成异质结,产生内电场,自生偏压驱动电子流动.已有诸多研究报道将TiO_2催化剂与g-C_3N_4复合形成异质结,提高光催化活性.由于g-C_3N_4(~-1.12 eV vs.NHE)导带位置相比于TiO_2(~-0.2 eV vs.NHE)更负,因此在两者之间可形成内部偏压,驱动电子由g-C_3N_4转移至TiO_2.WO_3/W导带位置(~+0.2eV vs.NHE)比TiO_2与g-C_3N_4更正,因此自生内偏压促进电子由阳极流动至阴极.我们研究组发展了一种在无光条件下的自偏压电化学燃料电池系统,异质结间的电子流动可活化氧气产生自由基,自由基可用于阳极污染物的降解,但阴极未降解污染物.本文在上述研究基础上,应用TiO_2/g-C_3N_4异质结与WO_3/W分别作为阳极与阴极催化剂,构建自偏压催化燃料电池系统,在无光条件下催化阳极与阴极之间自发电子转移,活化氧气产生自由基,同时实现低能耗阳极室内污染物如罗丹明B和三氯生的氧化,且电子用于阴极室内硝态氮的还原.通过在空气中原位加热与氧化钨丝制得WO_3/W阴极,由扫描电镜图可知在钨丝表面形成三氧化钨纳米粒子,此结构增大了催化剂的表面积以及催化剂与电解液的接触面积,有利于电荷转移.用循环伏安曲线(CV)与电流时间曲线(I-t)表征了电极的电化学性质.CV测试结果表明,相比于硫酸钠电解液,WO_3/W阴极在含有硝态氮的电解液中存在还原峰,且紫外照射比无光条件下的电流略大,说明此电极在无光条件下可用于还原硝态氮,有光更利于激发催化剂产生电子与空穴降解和去除污染物.在硫酸钠电解液中,无光照条件下(同室),I-t曲线表明TiO_2/g-C_3N_4相比于WO_3/W电极可产生更大电流,因此选择TiO_2/g-C_3N_4作为阳极,WO_3/W作为阴极.在含污染物电解液中,无光照条件下,Pt片作为对电极时(同室),I-t曲线中的电流在曝气时比未曝气时小,说明电极上产生的部分电子用于活化氧气产生自由基,因此转移到外电路的电子减少,电流变小;相反,当TiO_2/g-C_3N_4阳极置于阳极室,WO_3/W阴极置于阴极室时(两室),阳极鼓入空气,阴极曝氮气时,电流比两室均未曝气时大,说明此系统有利于电子产生与转移,用于氧化还原去除污染物.相比于传统方法,此系统通过阳极室内曝空气与活化分子氧形成自由基,无需外加偏压,在有光与无光条件下,均可实现对阳极室与阴极室内不同污染物的同时去除或降解,同时提出了此系统中的降解机理.  相似文献   

14.
本文采用高温固相原位制备新型二维SrSb_2O_6/g-C_3N_4异质结光催化复合材料,并将其用于可见光催化降解四环素。通过XRD和FT-IR谱对其结构进行表征。光催化降解实验表明,异质结复合材料较母体g-C_3N_4和SrSb_2O_6而言,光催化效率均得到了提升。其中,异质结样品SSO-CN-2对四环素溶液具有最优的光催化降解效率,其降解率在240min达到62%,分别是母体g-C_3N_4和SrSb_2O_6的2.5和46.0倍。光催化动力学实验表明,其降解曲线符合准一级动力学模型,速率常数为3.920×10~(-3)min~(-1)。循环实验表明,异质结样品的光催化降解性能表现稳定并且结构稳定性较高。活性自由基捕获实验表明,·O~-_2是主要催化反应的活性物种,光催化机理可用半导体异质结Type-II类型得到解释。  相似文献   

15.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

16.
以凹凸棒石(简称凹土,ATP)为基体,通过原位化学法一步直接合成g-C_3N_4薄层材料,并将其有效固载于凹土表面(ATP/gC_3N_4),再通过原位沉淀法引入不同比例AgFeO_2纳米颗粒,构筑系列兼具磁分离特性和高效光催化活性的ATP/g-C_3N_4-AgFeO_2-Y复合光催化剂(Y=wATP/g-C_3N_4/(wATP/g-C_3N_4+wAg FeO_2)×100%,表示ATP/g-C_3N_4在ATP/g-C_3N_4-AgFeO_2复合材料中所占的质量百分数)。采用XRD、SEM、BET、UV-Vis、PL和ICP表征其结构和物化性能,以酸性红G(ARG)为目标降解物,研究其光催化性能。研究发现:通过形成Si-O-C键,g-C_3N_4薄层被均匀固定在凹土表面;AgFeO_2纳米颗粒均匀沉积于ATP/g-C_3N_4表面并形成Z型异质结,ATP/gC_3N_4-AgFeO_2-Y具有比ATP/g-C_3N_4和AgFeO_2更优异的可见光光催化性能,且随着ATP/g-C_3N_4含量的增大呈先升高而后下降的趋势;当Y=57%时复合材料的性能最佳,ATP/g-C_3N_4-AgFeO_2-57%对20 mg·L-1酸性红G的降解率可达97.4%,循环4次使用后,降解率仍保持94.2%。通过自由基捕获实验研究了光催化反应机理,发现·O2-是光催化过程的主要活性物种。  相似文献   

17.
采用湿化学方法制备了K/Cl掺杂石墨相氮化碳(g-C_(3)N_(4))纳米材料.以三聚氰胺、KCl作为前驱体,经过溶解、沉淀和焙烧过程,使K/Cl元素在g-C_(3)N_(4)结构上均匀分布.K/Cl掺杂的引入并不影响g-C_(3)N_(4)物相的形成,而是使样品的比表面积增加至18.36 m^(2)·g^(-1),是纯g-C_(3)N_(4)的1.7倍.利用光催化降解气态污染物来表征材料的光催化性能,结果表明,全光谱光照下CN-K/Cl-0.07的性能是纯g-C_(3)N_(4)的2.0倍.光催化性能的提升归因于K/Cl双原子掺杂,不但提升了材料的光吸收能力,而且有利于光生电子-空穴的分离.4次循环试验后,CN-K/Cl-0.07光催化降解异丙醇的性能没有明显降低,证明其具有良好的稳定性.K/Cl掺杂g-C_(3)N_(4)光催化活性高且使用性能好,将会在气体污染物降解领域产生广泛的应用.  相似文献   

18.
刘优昌  王亮 《燃料化学学报》2018,46(9):1146-1152
以三聚氰胺作为合成g-C_3N_4纳米片的前躯体,以Bi(NO3)3·5H2O和KBr作为合成BiOBr的原料,采用水热法构建g-C_3N_4/Bi OBr二维异质结可见光催化剂,有效的晶面复合和合适的能带组合有助于增强g-C_3N_4和BiOBr的可见光催化活性。利用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外-可见漫反射光谱(UVvis DRS)等方法表征其结构、光学性质以及组成结构。在可见光(λ420 nm)下以光催化降解RhB来评价合成催化剂的光催化活性,结果表明,g-C_3N_4/BiOBr光催化降解罗丹明B(Rh B)的效率高于单体g-C_3N_4和BiOBr,并对g-C_3N_4/BiOBr增强可见光催化RhB机理进行解释。  相似文献   

19.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   

20.
利用水热法合成了一维棒状BiPO_4微晶,在此基础上采用浸渍一焙烧法进行g-C_3N_4量子点表面修饰获得新颖的g-C_3N_4/BiPO_4异质结。借助X射线衍射(XRD)、场发射扫描电镜(PE-SEM)、透射电镜(HRTEM)、能谱(EDS)、紫外-可见漫反射(UV-VisDRS)等测试手段对所得样品的相组成、形貌和谱学特征进行了表征。选择罗丹明B(RhB)和苯酚作为模型污染物研究了所得在可见光下的催化活性。结果表明,样品16%(ω/ωg-C_3N_4BiPO_4对RhB降解的速率常数分別是纯g-C_3N_4和BiPO_4的4.6倍和15倍。g-C_3N_4量子点与BiPO_4之间形成异质结,抑制了光生电子-空穴对的复合,从而提高了催化剂的活性。自由基捕获实验进一步表明,超氧负离子自由基(·O_2~-)是催化降解RhB和苯酚的主要活性物种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号