首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to investigate the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) (PEG-d,l-PLA) multiblock copolymer, in bulk and as microspheres, in aqueous medium. The degradation behaviour of PLA homopolymers in bulk and microspheres was evaluated as comparison.Microsphere preparation was performed by the double emulsion solvent evaporation method. Physical-chemical characterization of the raw polymers and the microspheres was performed by nuclear magnetic resonance (NMR) and modulated differential scanning calorimetry (MDSC). Polymer molecular weight, before and after incubation in aqueous environment, was evaluated by GPC; water uptake and mass loss were determined gravimetrically.The presence of PEG segments inside PLA chains gave a characteristic spongy structure to the microspheres. A significant increase in polymer Tg values was found for the microsphere formulations compared to polymer in bulk. After 63 days of incubation in the aqueous environment, the PEG-d,l-PLA microspheres achieved an average Mw reduction of 47% compared to 20% for PLA microspheres. The corresponding Mw decrease of the polymers in bulk was significantly higher: 72% and 41% for PEG-d,l-PLA and PLA, respectively.The data show how the degradation behaviour of polymer in bulk in an aqueous environment is significantly different from the behaviour of the corresponding microspheres. These results highlight the importance of performing a thorough physical-chemical characterization on microsphere formulations.  相似文献   

2.
Polylactide (PLA) is a potential candidate for the partial replacement of petrochemical polymers because it is biodegradable and produced from annually renewable resources. Characterized by its high tensile strength, unfortunately the brittleness and rigidity limit its applicability. For a great number of applications such as packaging, fibers, films, etc., it is of high interest to formulate new PLA grades with improved flexibility and better impact properties.In order to develop PLA-based biodegradable packaging, the physico-mechanical properties of commercially available PLA should be modified using biodegradable plasticizers. To this end, PLA was melt-mixed with blends of tributyl citrate and more thermally stable low molecular weight block copolymers based on poly(d,l-lactide) and poly(ethylene glycol) of different molecular weights and topologies. The copolymers have been synthesized using a potassium based catalyst which is expected to be non toxic and were characterized by utilization of TGA, GPC and NMR techniques.The effect of the addition of up to 25 wt% plasticizer on the thermo-mechanical properties of PLA was investigated and the results were correlated with particular attention to the relationship between properties and applications.To confirm the safety of the catalyst used for the preparation of the copolymers, in vitro cytotoxicity tests have been carried out using MTS assay and the results show their biocompatibility in the presence of the fibroblast cells.Compost biodegradation experiments carried out using neat and plasticized PLA have shown that the presence of plasticizers accelerates the degradation of the PLA matrix.  相似文献   

3.
To control the depolymerization process of poly(l-lactic acid) into l,l-lactide for feedstock recycling, the racemization of l,l-lactide as a post-depolymerization reaction was investigated. In the absence of a catalyst, the conversion to meso-lactide increased with increase in the heating temperature and time at a higher rate than the conversion into oligomers. The resulting high composition of meso-lactide suggests that the direct racemization of l,l-lactide had occurred in addition to the known racemization mechanism that occurs on the oligomer chains. In the presence of MgO, the oligomerization rapidly proceeded to reach an equilibrium state between monomers and oligomers. The equilibrium among l,l-, meso-, and d,d-lactides was found to be a convergent composition ratio l,l-:meso-:d,d-lactides = 1:1.22:0.99 (wt/wt/wt) after 120 min at 300 °C. This composition ratio also indicates that in addition to the known racemization reaction on the oligomer chains, direct racemization among the lactides is also a frequent occurrence.  相似文献   

4.
Composite fibers composed of poly(l-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (∼4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.  相似文献   

5.
In order to improve the properties of chitosan and obtain new fully biodegradable materials, blends of poly(l-lactide) (PLLA) and chitosan with different compositions were prepared by precipitating out PLLA/chitosan from acetic acid-DMSO mixtures with acetone. The blends were characterized by Fourier transform infrared analysis (FTIR), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), 13C solid-state NMR and Wide-angle X-ray diffraction (WAXD). FTIR and XPS results showed that intermolecular hydrogen bonds existed between two components in the blends, and the hydrogen bonds were mainly between carbonyls of PLLA and amino groups of chitosan. The melting temperatures, cold crystallization temperatures and crystallinity of the PLLA component decreased with the increase in chitosan content. Blending chitosan with PLLA suppressed the crystallization of the PLLA component. Although the crystal structure of PLLA component was not changed, the crystallization of the blends was affected because of the existence of hydrogen bonds between two components, which was proved by WAXD results.  相似文献   

6.
A series of homo- and copolymers were synthesized by ring-opening polymerization of 1,3-trimethylene carbonate and d,l-lactide, using low toxic Zn(Lac)2 as catalyst. The hydrolytic and enzymatic degradation of PTMC homopolymer and PTDLA copolymers was performed at 37 °C in pH 7.4 phosphate buffered saline or in pH 8.5 Tris buffer using proteinase K. Degradation was followed by using various analytical techniques such as NMR, GPC, DSC and ESEM. PTMC degrades extremely slowly by pure hydrolysis or in the presence of proteinase K. In contrast, PTDLA copolymers with different compositions degrade at various rates both in PBS and in enzyme solutions. The higher the LA content, the faster the degradation. LA units are preferentially degraded during hydrolytic degradation, indicating that ester bonds are more susceptible to hydrolytic cleavage than carbonate ones. Changes in surface morphology are observed during enzymatic degradation, in agreement with surface erosion process. The PTDLA11 copolymer with equivalent TMC/LA contents is highly elastic. Its residual strain is approximately 4% after the first cycle at a strain of 50%. The shape recovery ratio is up to 83%. Therefore, it is concluded that high molecular weight PTDLA copolymers are promising candidates for clinical applications in minimally invasive surgery.  相似文献   

7.
This paper reports the preparation of bionanocomposites based on poly(d,l-lactide) and cellulose nanowhiskers (PDLLA/CNWs) and studies the influence of the CNWs on the hydrolytic degradation behavior of the polylactide. The hydrolytic degradation process was studied in a phosphate buffer medium through the sample weight loss and also by FTIR, DSC and TGA measurements. The presence of CNWs induced a strong delay in the hydrolytic degradation of the PDLLA, even when the concentration of the nanofillers was only 1%. This effect was related to the physical barrier created by the highly crystalline CNWs that inhibited water absorption and hence retarded the hydrolytic degradation of the bionanocomposites. In addition, the incorporation of cellulose nanocrystals in the PDLLA also made the biopolymer more thermally stable, increasing the initial temperature of mass loss even after the degradation in phosphate medium. The results presented here show the possibility of controlling the biodegradability and prolonging the service life of a polylactide through the incorporation of a small quantity of nanofillers obtained from renewable materials.  相似文献   

8.
Poly(d,l-lactide) (PDLLA) degraded at processing temperature under air and nitrogen. A random chain scission model was established and used to determine the activation energy Ea, and FT-IR, 1H and 13C NMR were used to elucidate the degradation behavior under different atmospheres. Results showed that there were two to three stages. The 1st stage was dominated by the oligomers containing carboxylic acid groups and hydroxyl groups, during which oxygen and nitrogen had little effect on the degradation, thus they share similar Ea. When the oligomers were consumed over or evaporated, the 2nd stage began, and oxygen had a promoting effect on the thermo-oxidation process, resulting in the great decrease in Ea. The third stage of PDLLA was observed when it degraded under nitrogen over 200 °C, which was caused by the appearance of carboxylic acid substance.  相似文献   

9.
This study elucidates the thermal degradation behavior of biodegradable poly(l-lactide) (PLLA)/layered double hydroxide (LDH) nanocomposites was explored using thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS) in an inert atmosphere. PLLA/LDH nanocomposites were fabricated using PLLA and organically-modified magnesium/aluminum layered double hydroxide (P-LDH) in tetrahydrofuran solution. According to the TGA results, the thermal stability of PLLA/P-LDH nanocomposites was significantly lower than that of pure PLLA matrix, perhaps because P-LDH provides thermal acceleration of the degradation of the underlying polymer from the heat source. The identification of the thermal degradation products by Py-GC/MS evidently shows that introducing P-LDH into PLLA leads to a remarkable change during the thermal degradation process. The main reaction route of neat PLLA was through inter- and intra-transesterification to generate lactides and oligomer. The primary volatile products obtained from PLLA/P-LDH nanocomposites were lactides regardless of the temperature of degradation. These results suggest that the thermal degradation behavior of PLLA/P-LDH nanocomposites is governed by the preferential formation of lactide by the unzipping depolymerization reaction, which is catalyzed by Mg and Al components in P-LDH.  相似文献   

10.
The predominant mechanism of the hydrolytic degradation of oligo(d,l-lactide)-grafted dextrans in phosphate buffer was followed by quantifying both released dextran and lactic acid from the copolymers. The studied amphiphilic copolymers, with well-defined structure, exhibited various oligo(d,l-lactide) weight fractions (FOLA) while having a quite high extent of free hydroxyl groups (>90%). Depending on their FOLA, oligo(d,l-lactide)-grafted dextrans were soluble either in water or in organic solvents (THF, toluene, …) and different prevailing mechanisms of hydrolytic degradation were observed. The copolymer soluble in THF, with longer oligo(d,l-lactide) grafts and higher FOLA, was found to degrade via a particular mechanism by which the greatest part of dextran was released into buffer medium during the first two weeks of degradation. During the initial stage of degradation, the hydrophilicity of dextran backbone was considered to be the main driving force for the hydrolytic cleavage of the ester linkage between backbone and grafts. Released oligo(d,l-lactide) grafts were found to be degraded via chain-end degradation or random degradation depending on their solubility in buffer medium. In case of water-soluble copolymers with shorter oligo(d,l-lactide) grafts and lower FOLA, the chain-end degradation was exclusively observed.  相似文献   

11.
A poly(ethylene glycol) (PEG)-based new amphiphilic block copolymer bearing the poly(p-dioxanone-co-l-lactide) (PPDO/PLLA) hydrophobic moieties was prepared. Depending on the copolymer composition and molecular weights, solubility of the polymeric samples in water was varied. Its diluted aqueous solution properties were studied by viscometry, dye solubilization, 1H-NMR and dynamic light scattering. 1,6-Diphenyl-1,3,5-hexatriene solubilization and 1H-NMR spectra carried out in CDCl3 and D2O were used to prove the existence of hydrophobic domains as the core of micelle. Average particle size of 60-165 nm with low polydispersity and lower negative zeta (ξ) potential of −3 to −14 mV were observed on the aqueous copolymer dispersion.  相似文献   

12.
Random copolymers of l-lactide (LA) and glycidol (G) were systematically synthesized via ring-opening polymerization (ROP). It was found that thermal properties of copolymers were strongly dependent on polymer composition which was successively controllable by changing comonomer feed ratio. The effects of polymerization conditions as well as polymer compositions on polymer properties were thoroughly studied. The biodegradation and enzymatic hydrolysis of copolymers were also examined. It was found that the biodegradability by an activated sludge of L/G copolymers was strongly affected by both polymer composition and crystallinity whereas their hydrolyzability by proteinase K was merely influenced by polymer composition.  相似文献   

13.
Carrie L.K. Gilbert 《Tetrahedron》2005,61(35):8339-8344
l,l-Puromycin, a diastereomer of the natural peptidyl nucleoside antibiotic puromycin, has been synthesized from l-xylose in 13 steps.  相似文献   

14.
Proteinase K was successfully loaded inside ultrafine fibers of poly(ethylene glycol)-poly(l-lactide) (PELA) by emulsion electrospinning. A core/shell fiber structure was formed and verified by a transmission electron microscope. In vitro biodegradation of electrospun PELA membranes containing proteinase K (PELA-P) was examined in Tris-HCl buffer solution at pH 8.6 and 37 °C in comparison with electrospun PELA membranes without proteinase K. During biodegradation, mass loss, water absorption, pH value of the incubated buffer, fibrous morphology and thermal properties were monitored. Results suggested that PELA-P membranes degraded significantly faster than PELA membranes. A significant drop in pH value of the buffer after incubation of PELA-P membranes for 1 d was observed, and after 7 d, PELA-P membranes lost their fibrous appearance and masses almost completely. In contrast, electrospun PELA membranes did not show any obvious changes. The obtained electrospun PELA-P membranes exhibited self-accelerated biodegradability and could benefit drug controlled release and tissue regeneration.  相似文献   

15.
The dispersion of the nanometer-sized carbon nanotubes in a polymer matrix leads to a marked improvement in the properties of the polymer. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt compounded with multiwalled carbon nanotubes (MWCNTs). A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The morphology of the composite was observed with scanning electron microscopy. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The thermal stability of the composites was studied using thermogravimetric analysis and their activation energy during thermal degradation was determined using the Kissinger and Flynn-Wall-Ozawa methods. The activation energy of PLLA/PLLA-g-MWCNT was higher than that of PLLA/MWCNT, which indicates that the composite made with the PLLA-g-MWCNTs was more thermally stable than the composite made with the MWCNTs.  相似文献   

16.
A rapid l-proline catalyzed direct aldol reaction between various aldehydes and acetone was achieved using PEG as the solvent with comparable enantioselectivities and yields to those obtained in other solvents. Recycling the catalyst and solvent (PEG) was possible 10 times without loss of activity.  相似文献   

17.
A simple method was adopted to prepare poly(l-lactide)-grafted graphite oxide (PLLA-g-GO) by ring opening polymerization of l-lactide in the presence of graphite oxide (GO) with hydroxyl groups. GO was firstly treated with tolylene-2,4-diisocyanate (TDI) to create an anchor site on GO, and then reacted with 1,4-butanediol (BD) to afford functional hydroxyl groups grafted onto the surface of GO. So that, the dispersity of GO in the organic solution was enhanced. According to the thermogravimetric analysis (TGA), the organic composition of GO treated with TDI and BD (GO-TDI-OH) was estimated to be about 13 wt%. Also, using TGA, the composition of GO in the PLLA-g-GOs could be estimated. The hydroxyl groups on the GO surface acted as initiators for the ROP of l-lactide. Further, they also played as a vital role in controlling the molecular weight of the PLLA. The synthesized PLLA-g-GOs were characterized by the FTIR, 1HNMR and UV/Vis spectroscopies. The dispersion states of GO in the PLLA-g-GOs were investigated by wide angle x-ray diffraction patterns. According to differential scanning calorimeter study, it was found that GO platelets have nucleating effect on the crystallization of PLLA in the PLLA-g-GO. Additionally, the incorporation of GO improved the electrical conductivity of PLLA, indicating that GOs is a good conducting-modifiers for polymers.  相似文献   

18.
Surface properties and enzymatic degradation of poly(l-lactide) (PLLA) end-capped with hydrophobic dodecyl and dodecanoyl groups were investigated by means of advancing contact angle (θa) measurement, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). The θa values of end-capped PLLA films were larger than those of non-end-capped PLLA films, suggesting that the hydrophobic dodecyl and dodecanoyl groups were segregated on the film surface. The weight changes of end-capped PLLA thin films during enzymatic degradation in the presence of proteinase K were monitored by using a QCM technique. The relatively fast weight loss of PLLA film occurred during first few hours of degradation, followed by a decrease in the erosion rate. The erosion rate of PLLA films at the initial stage of degradation was dependent on the chain-end structure of PLLA molecules, and the value decreased with an increase in the amount of hydrophobic functional groups. The surface morphologies of PLLA thin films before and after degradation were characterized by AFM. After the enzymatic degradation, the surface of non-end-capped PLLA films was blemished homogeneously. In contrast, the end-capped PLLA thin films were degraded heterogeneously by the enzyme, and many hollows were formed on the film surface. From these results, it has been concluded that the introduction of hydrophobic functional groups at the chain-ends of PLLA molecules depressed the erosion rate at the initial stage of enzymatic degradation.  相似文献   

19.
Biodegradable poly(l-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.  相似文献   

20.
This article contains a detailed analysis of the crystallization behavior of poly(l-lactic acid) (PLLA). Crystallization rates of PLLA have been measured in a wide temperature range, using both isothermal and non-isothermal methods. The combined usage of multiple thermal treatments allowed to obtain information on crystallization kinetics of PLLA at temperatures almost ranging from glass transition to melting point. Crystallization rate of PLLA is very high at temperatures between 100 and 118 °C, showing a clear deviation from the usual bell-shaped curve. This discontinuity has been ascribed to a sudden acceleration in spherulite growth, and is not associated to morphological changes in the appearance of PLLA spherulites. Experimental data of spherulite growth rates of PLLA have been analyzed with Hoffman-Lauritzen method. Applicability and limitations of this theoretical treatment have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号