首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To meet the low warming targets proposed in the 2015 Paris Agreement,substantial reduction in carbon emissions is needed in the future.It is important to know how surface climates respond under low warming targets.The present study investigates the surface temperature changes under the low-forcing scenario of Representative Concentration Pathways(RCP2.6)and its updated version(Shared Socioeconomic Pathways,SSP1-2.6)by the Flexible Global Ocean-Atmosphere-Land System(FGOALS)models participating in phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6,respectively).In both scenarios,radiative forcing(RF)first increases to a peak of 3 W m^?2 around 2045 and then decreases to 2.6 W m^?2 by 2100.Global mean surface air temperature rises in all FGOALS models when RF increases(RF increasing stage)and declines or holds nearly constant when RF decreases(RF decreasing stage).The surface temperature change is distinct in its sign and magnitude between the RF increasing and decreasing stages over the land,Arctic,North Atlantic subpolar region,and Southern Ocean.Besides,the regional surface temperature change pattern displays pronounced model-to-model spread during both the RF increasing and decreasing stages,mainly due to large intermodel differences in climatological surface temperature,ice-albedo feedback,natural variability,and Atlantic Meridional Overturning Circulation change.The pattern of tropical precipitation change is generally anchored by the spatial variations of relative surface temperature change(deviations from the tropical mean value)in the FGOALS models.Moreover,the projected changes in the updated FGOALS models are closer to the multi-model ensemble mean results than their predecessors,suggesting that there are noticeable improvements in the future projections of FGOALS models from CMIP5 to CMIP6.  相似文献   

2.
Observed hiatus or accelerated warming phenomena are compared with numerical simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archives,and the associated physical mechanisms are explored based on the CMIP5 models.Decadal trends in total ocean heat content (OHC) are strongly constrained by net top-of-atmosphere (TOA) radiation.During hiatus decades,most CMIP5 models exhibit a significant decrease in the SST and upper OHC and a significant increase of heat penetrating into the subsurface or deep ocean,opposite to the accelerated warming decades.The shallow meridional overturning of the Pacific subtropical cell experiences a significant strengthening (slowdown) for the hiatus (accelerated warming) decades associated with the strengthened (weakened) trade winds over the tropical Pacific.Both surface heating and ocean dynamics contribute to the decadal changes in SST over the Indian Ocean,and the Indonesian Throughflow has a close relationship with the changes of subsurface temperature in the Indian Ocean.The Atlantic Meridional Overturing Circulation (Antarctic Bottom Water) tends to weaken (strengthen) during hiatus decades,opposite to the accelerated warming decades.In short,the results highlight the important roles of air-sea interactions and ocean circulations for modulation of surface and subsurface temperature.  相似文献   

3.
The future changes in the relationship between the South Asian summer monsoon (SASM) and the East Asian summer monsoon (EASM) are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5 (SSP5- 8.5) experiments from 26 coupled models that participated in the phase 6 of the Coupled Model Intercomparison Project (CMIP6). Six models, selected based on their best performance in simulating the upper- and lower-level pathways related to the SASM-EASM teleconnection in the historical run, can capture the positive relationship between the SASM and the rainfall over northern China. In the future scenario, the upper-level teleconnection wave pattern connecting the SASM and the EASM exhibits a significant weakening trend, due to the rainfall anomalies decrease over the northern Indian Peninsula in the future. At the lower level, the western North Pacific anticyclone is projected to strengthen in the warming climate. The positive (negative) rainfall anomalies associated with positive (negative) SASM rainfall anomalies are anticipated to extend southward from northern China to the Yangtze-Huai River valley, the Korea Peninsula, and southern Japan. The connection in the lower-level pathway may be strengthened in the future.  相似文献   

4.
Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5, the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacific SST under global warming.Two features with complex formation processes, the zonal El Ni ?no-like pattern and the meridional equatorial peak warming(EPW), are investigated. The climatological evaporation is the main contributor to the El Ni ?no-like pattern, while the ocean dynamical thermostat effect plays a comparable negative role. The cloud–shortwave-radiation–SST feedback and the weakened Walker circulation play a small positive role in the El Ni ?no-like pattern. The processes associated with ocean dynamics are confined to the equator. The climatological evaporation is also the dominant contributor to the EPW pattern, as suggested in previous studies. However, the effects of some processes are inconsistent with previous studies. For example,changes in the zonal heat advection due to the weakened Walker circulation have a remarkable positive contribution to the EPW pattern, and changes in the shortwave radiation play a negative role in the EPW pattern.  相似文献   

5.
Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese models(BCC-CSM2-MR,FGOALS-f3-L,FGOALS-g3,and NESM3)from phase 6 of the Coupled Model Intercomparison Project(CMIP6)with the Japanese 55-year reanalysis(JRA-55)as a baseline.Compared with six or seven SSWs in a decade in JRA-55,three models underestimate the SSW frequency by~50%,while NESM3 doubles the SSW frequency.SSWs mainly appear in midwinter in JRA-55,but one-month climate drift is simulated in the models.The composite of splits is stronger than displacements in both the reanalysis and most models due to the longer pulse of positive eddy heat flux before onset of split SSWs.A wavenumber-1-like temperature anomaly pattern(cold Eurasia,warm North America)before onset of displacement SSWs is simulated,but cold anomalies are mainly confined to North America after displacement SSWs.Although the lower tropospheric temperature also displays a wavenumber-1-like pattern before split SSWs,most parts of Eurasia and North America are covered by cold anomalies after split SSWs in JRA-55.The models have different degrees of fidelity for the temperature anomaly pattern before split SSWs,but the wavenumber-2-like temperature anomaly pattern is well simulated after split SSWs.The center of the negative height anomalies in the Pacific sector before SSWs is sensitive to the SSW type in both JRA-55 and the models.A negative North Atlantic Oscillation is simulated after both types of SSWs in the models,although it is only observed for split SSWs.  相似文献   

6.
Snow depth over sea ice is an essential variable for understanding the Arctic energy budget.In this study,we evaluate snow depth over Arctic sea ice during 1993-2014 simulated by 31 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)against recent satellite retrievals.The CMIP6 models capture some aspects of the observed snow depth climatology and variability.The observed variability lies in the middle of the models’simulations.All the models show negative trends of snow depth during 1993-2014.However,substantial spatiotemporal discrepancies are identified.Compared to the observation,most models have late seasonal maximum snow depth(by two months),remarkably thinner snow for the seasonal minimum,an incorrect transition from the growth to decay period,and a greatly underestimated interannual variability and thinning trend of snow depth over areas with frequent occurrence of multi-year sea ice.Most models are unable to reproduce the observed snow depth gradient from the Canadian Arctic to the outer areas and the largest thinning rate in the central Arctic.Future projections suggest that snow depth in the Arctic will continue to decrease from 2015 to 2099.Under the SSP5-8.5 scenario,the Arctic will be almost snow-free during the summer and fall and the accumulation of snow starts from January.Further investigation into the possible causes of the issues for the simulated snow depth by some models based on the same family of models suggests that resolution,the inclusion of a hightop atmospheric model,and biogeochemistry processes are important factors for snow depth simulation.  相似文献   

7.
对CMIP6全球气候模式在中国地区极端降水的模拟能力进行了综合评估.基于CN05.1观测数据集和32个CMIP6全球气候模式的降水数据,采用8个常用极端降水指数对极端降水进行了定量描述.研究结果表明,在极端降水的气候平均态方面,CMIP6多模式集合对1961—2005年中国地区区域平均的8个极端降水指数模拟的平均相对误...  相似文献   

8.
针对《巴黎协定》提出的温控目标,利用耦合模式比较计划第五阶段(CMIP5)模式在RCP2.6、RCP4.5和RCP8.5情景下的模拟结果,初步分析了全球升温情景下陆地生态系统净初级生产力(NPP)相对于参考时段(1986—2005年)的变化,重点分析了1.5℃和2℃升温时NPP相对于参考时段的变化量,并探讨了大气CO2浓度、气温、降水和辐射的变化及其对NPP变化的影响。CMIP5基于各典型浓度路径模拟的全球陆地生态系统NPP均呈增加趋势,且NPP增加量与升温幅度成正比。在相同的升温幅度下,基于各典型浓度路径模拟的各环境因子和NPP的变化量较为一致。陆地生态系统NPP总量增加主要由大气CO2浓度上升驱动,其他环境因子的影响相对较弱。中国东南部、非洲中部、美国东南部和亚马孙雨林西部地区NPP增加最明显。NPP变化量的空间格局主要由大气CO2浓度增加和升温控制,降水和辐射的影响相对较小。具体而言,大气CO2浓度上升对中低纬度的NPP变化贡献最大,对北方高纬度地区NPP变化贡献较小。温度上升有利于促进北方高纬度地区和青藏高原地区NPP,但对中低纬度地区的NPP有较强的抑制作用。鉴于既有典型浓度路径和地球系统模型的限制,本文对未来升温情景下陆地生态系统NPP的预估仍存在较大的不确定性,需要在未来的研究中进一步改进。  相似文献   

9.
This paper introduces the experimental designs and outputs of the Diagnostic,Evaluation and Characterization of Klima(DECK),historical,Scenario Model Intercomparison Project(MIP),and Paleoclimate MIP(PMIP)experiments from the Nanjing University of Information Science and Technology Earth System Model version 3(NESM3).Results show that NESM3 reasonably simulates the modern climate and the major internal modes of climate variability.In the Scenario MIP experiment,changes in the projected surface air temperature(SAT)show robust“Northern Hemisphere(NH)warmer than Southern Hemisphere(SH)”and“land warmer than ocean”patterns,as well as an El Ni?o-like warming over the tropical Pacific.Changes in the projected precipitation exhibit“NH wetter than SH”and“eastern hemisphere gets wetter and western hemisphere gets drier”patterns over the tropics.These precipitation patterns are driven by circulation changes owing to the inhomogeneous warming patterns.Two PMIP experiments show enlarged seasonal cycles of SAT and precipitation over the NH due to the seasonal redistribution of solar radiation.Changes in the climatological mean SAT,precipitation,and ENSO amplitudes are consistent with the results from PMIP4 models.The NESM3 outputs are available on the Earth System Grid Federation nodes for data users.  相似文献   

10.
Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal climate variability.Here,we address the detection of dynamic sea level(DSL)changes by combining the perspectives of a single and a multimodel ensemble approach(the 50-member CanESM5 and a 27-model ensemble,respectively,all retrieved from the CMIP6 archive),under three CMIP6 projected scenarios:SSP1-2.6,SSP3-7.0 and SSP5-8.5.The ensemble analysis takes into account four key metrics:signal(S),noise(N),S/N ratio,and time of emergence(ToE).The results from both sets of ensembles agree in the fact that regions with higher S/N(associated with smaller uncertainties)also reflect earlier ToEs.The DSL signal is projected to emerge in the Southern Ocean,Southeast Pacific,Northwest Atlantic,and the Arctic.Results common for both sets of ensemble simulations show that while S progressively increases with increased projected emissions,N,in turn,does not vary substantially among the SSPs,suggesting that uncertainty arising from internal climate variability has little dependence on changes in the magnitude of external forcing.Projected changes are greater and quite similar for the scenarios SSP3-7.0 and SSP5-8.5 and considerably smaller for the SSP1-2.6,highlighting the importance of public policies towards lower emission scenarios and of keeping emissions below a certain threshold.  相似文献   

11.
全球季风模式比较计划(GMMIP)是第六次国际耦合模式比较计划(CMIP6)的重要组成部分。文中首先介绍了GMMIP发起的科学背景,指出发起GMMIP的必要性和历史机遇。进一步扼要描述了GMMIP试验设计的总体思路和方案、试验的用途以及与CMIP6其他模式比较子计划的相关性。最后对GMMIP的科学意义进行了评述,指出其在提升和扩大中国季风模拟和研究领域国际影响力方面的重要作用。  相似文献   

12.
Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.  相似文献   

13.
The simulated Arctic sea ice drift and its relationship with the near-surface wind and surface ocean current during 1979-2014 in nine models from China that participated in the sixth phase of the Coupled Model Intercomparison Project(CMIP6)are examined by comparison with observational and reanalysis datasets.Most of the models reasonably represent the Beaufort Gyre(BG)and Transpolar Drift Stream(TDS)in the spatial patterns of their long-term mean sea ice drift,while the detailed location,extent,and strength of the BG and TDS vary among the models.About two-thirds of the models agree with the observation/reanalysis in the sense that the sea ice drift pattern is consistent with the near-surface wind pattern.About the same proportion of models shows that the sea ice drift pattern is consistent with the surface ocean current pattern.In the observation/reanalysis,however,the sea ice drift pattern does not match well with the surface ocean current pattern.All nine models missed the observational widespread sea ice drift speed acceleration across the Arctic.For the Arctic basin-wide spatial average,five of the nine models overestimate the Arctic long-term(1979-2014)mean sea ice drift speed in all months.Only FGOALS-g3 captures a significant sea ice drift speed increase from 1979 to 2014 both in spring and autumn.The increases are weaker than those in the observation.This evaluation helps assess the performance of the Arctic sea ice drift simulations in these CMIP6 models from China.  相似文献   

14.
本文对中国参加CMIP5的6个气候模式对未来北极海冰的模拟情况进行了评估。通过与1979-2005年海冰的观测值以及2050年代的多模式集合平均值对比发现,中国的气候模式对海冰范围的模拟结果与CMIP5模式的平均水平存在一定差距,具体表现为:BNU-ESM和FGOALS-s2对当前海冰范围估计很好,但对温度敏感性略偏高;FIO-ESM对当前海冰范围估计很好,但由于海冰对温度的敏感性偏低,导致其模拟的未来海冰在各种RCP情景中都融化缓慢;FGOALS-g2(BCC-CSM1-1和BCC-CSM1-1-m)对当前海冰范围的模拟存在显著偏多(显著偏少)的问题,这导致其对未来海冰融化的估计也持续偏多(偏少)。中国模式对北极海冰的模拟偏差导致它们对极区地表大气温度和湿度的模拟出现偏差,并且这些极区气象要素的偏差会进一步通过动力过程传导到对秋、冬季西风带、极涡的模拟中去。研究表明:从对海冰本身的模拟以及海冰偏差带来的气候影响这两个角度看,BNU-ESM在中国模式中水平较高,但总体上中国6个气候模式在海冰分量的模拟上仍与世界平均水平存在差距,这需要中国各模式中心的持续改进。  相似文献   

15.
先前的观测研究表明,南太平洋四极子海温模态(SPQ)可以有效地作为ENSO的前兆信号.本文利用20个CMIP6模式及其对应的20个先前的CMIP5模式的工业化前气候模拟试验数据,评估和比较了CMIP6以及CMIP5模式对SPQ与ENSO的关系的模拟能力.结果表明,大多数CMIP5和CMIP6模式可以合理地模拟SPQ的基...  相似文献   

16.
Using the coupled ocean-atmosphere Bergen Climate Model,and a Lagrangian vorticity-based cyclone tracking method,the authors investigate current climate summer cyclones in the Northern Hemisphere and their change by the end of the 21st century,with a focus on Northern Eurasia and the Arctic.The two scenarios A1B and A2 for increasing greenhouse gas concentrations are considered.In the model projections,the total number of cyclones in the Northern Hemisphere is reduced by about 3% 4%,but the Arctic Ocean and adjacent coastal re-gions harbour slightly more and slightly stronger summer storms,compared to the model current climate.This in-crease occurs in conjunction with an increase in the high-latitude zonal winds and in the meridional tempera-ture gradient between the warming land and the ocean across Northern Eurasia.Deficiencies in climate model representations of the summer storm tracks at high lati-tudes are also outlined,and the need for further model inter-comparison studies is emphasized.  相似文献   

17.
本文基于NOAA再分析逐日降水数据和22个CMIP6模式的降水模拟数据,选取了6个极端降水指数,从气候态和相对变率两个角度对CMIP6模式在中亚地区极端降水方面的模拟能力开展了评估。结果表明,在气候态方面,中亚地区降水的空间分布表现为由西南向东北递增,其东南部山地迎风侧降水偏多;多模式集合对SDII(简单降水强度)和CDD(最大无雨期)模拟的平均误差分别为-5.43%和0.45%,对PRCPTOT(年总降水量)、R1mm(有雨日数)、Rx5day(最大连续五日降水)和CWD(最大雨期)的模拟结果存在明显高估,且在中亚东南部高海拔地区误差偏高。在相对变率方面,多模式集合模拟的中亚极端降水的相对变率偏小,其中对CWD的模拟效果相对较好,平均误差为-4.78%;对R1mm的模拟效果最差,平均误差为-36.16%。模式间进行比较,TaiESM1、EC-Earth3-Veg-LR和GFDL-ESM为22个CMIP6模式中模拟能力最好的前3个模式。  相似文献   

18.
在全球变暖背景下,分析和预测干旱的变化趋势和传播规律对于区域生态环境安全和灾害管理具有重要意义.本文基于第六次国际耦合模式比较计划(CMIP6),分析了SSP2-4.5和SSP5-8.5两种变暖情景下的气象(标准化降水指数SPI和标准化降水蒸发指数SPED,水文(标准化径流指数SRI)和农业(标准化土壤水分指数SSI)...  相似文献   

19.
在全球气候变暖背景下,中国江淮流域梅雨期的气候响应趋于复杂,给江淮流域梅雨期的气候预测带来了更多的不确定因素。研究江淮梅雨期气候对全球变暖的响应,对于认识江淮梅雨变化新趋势、提高新气候背景下的汛期预报及制定防灾减灾政策均有深远意义。采用中国地面气温和降水日值数据集对近几十年来江淮地区梅雨期的气温和降水变化进行了深入分析,基于观测结果,评估了国际耦合模式比较计划第5阶段(CMIP5)的22个模式结果,并对CMIP5模式预估的21世纪中排放(RCP4.5)和高排放(RCP8.5)情景下中国江淮流域梅雨期的气温和降水变化进行了分析,并对梅雨期气候变化的机理进行了探讨。研究结果表明,在全球变暖背景下,江淮地区梅雨期气候亦发生了相应的变化,气温呈现出显著的升高趋势,降水亦发生了相应调整,在较暖年降水偏多,较冷年降水偏少。在未来全球进一步变暖的背景下,江淮地区梅雨期平均气温进一步升高,降水进一步增多,且随着排放量的增加,降水的空间分布不均匀性也在加剧。   相似文献   

20.
为了解第六次国际耦合模式比较计划(CMIP6)土壤湿度数据在青藏高原的适用性,利用全球陆面数据同化系统(GLDAS)Noah模型输出的土壤湿度产品,对CMIP6 Historical试验的土壤湿度数据进行评估。结果表明:在青藏高原地区,CMIP6集合平均土壤湿度总体高于Noah产品,季节变化幅度明显小于Noah产品;各模式模拟的土壤湿度差异较大,在偏差、线性相关、标准差、场相关4个维度上,表现最好的模式分别为AWI-ESM-1-1-LR、NorESM2-MM、CanESM5、TaiESM1,而EC-Earth3、EC-Earth3-Veg和GFDL-CM4在两个维度上表现突出;综合考虑4个维度,AWI-ESM-1-1-LR等10个模式在高原适用性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号