首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
针对丘陵山地拖拉机作业环境复杂、底盘稳定性差及易翻覆等问题,设计一款具有三点式自动调平机构的丘陵山地拖拉机底盘。采用液压油缸自动控制车架平衡的三点调平方案,保证调平角度在-25°~+25°之间,基于Simulink软件对调平机构进行了运动学仿真分析,并运用经典力学理论,分析了拖拉机坡面横向及纵向稳定性。结果表明:底盘上坡极限翻倾角为55.38°,下坡极限翻倾角为44.03°,上坡纵向滑移角为25.62°,下坡纵向滑移角为13.18°。调平油缸角度范围在63.9°~107.5°之间,角速度范围在-0.2061 ~-0.1535 rad/s之间,角加速度范围在0.0358~-0.0035 rad/s2之间,液压调平机构运行平稳。该丘陵山地拖拉机底盘可提高拖拉机山地适应性及驾驶员安全性,具有良好的稳定性。  相似文献   

2.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65 hm2/h,犁耕作业平均生产率为0.36 hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

3.
丘陵山地拖拉机姿态主动调整系统设计与实验   总被引:3,自引:0,他引:3  
为保证拖拉机在丘陵山地的安全作业,并提高作业效率及乘坐舒适性,设计了基于双闭环PID算法的丘陵山地拖拉机姿态主动调整系统。首先,根据丘陵山地特定作业需求设计了姿态主动调整系统,包括姿态调整机构、液压驱动系统和控制系统;然后,建立了系统动力学模型,通过数值分析验证了该自动调平控制算法的有效性;最后,在山东五征集团生产的拖拉机上安装此系统,并进行了实验验证。结果表明:所设计的姿态主动调整系统在±10°的坡地上调平时间为7. 5 s,最大调平误差小于0. 5°,左右摆动机构摆角绝对值的差在±1°以内,能有效满足丘陵山地作业需求。同时,该拖拉机在高低起伏较大的坡地上以1挡速度(1. 98 km/h)行驶时,车身倾斜角可控制在±3°范围内,左右摆动机构摆角绝对值差在±5°范围内。所设计的姿态主动调整系统能适应恶劣作业环境的作业需求。  相似文献   

4.
为降低轮式拖拉机及其悬挂农具机组在丘陵山地作业时发生翻倾和滑移事故的可能性,对机组动态纵向稳定性进行了研究.首先,基于理论力学分析了机组在匀速上坡、匀速下坡和加速上坡3种不同工况下的动态纵向稳定性,建立了表征机组动态纵向稳定性的翻倾角和滑移角数学模型;然后,通过SolidWorks建立机组的三维实体模型,导入ADAMS...  相似文献   

5.
丘陵山地拖拉机车身调平双闭环模糊PID控制方法   总被引:4,自引:0,他引:4  
为提高丘陵山地拖拉机自动调平控制系统性能,基于已开发的丘陵山地拖拉机姿态调整机构,提出了利用双闭环模糊PID算法调整车轮摆动角度的自动调平控制方法。首先,建立被控对象状态空间模型,并基于该模型设计了双闭环模糊PID控制算法。然后,对自动调平控制系统进行仿真分析,结果表明,在使用相同PID参数条件下,双闭环模糊PID控制比双闭环PID控制性能更优,可有效减少超调量和调平时间。最后,开展了静态和动态试验验证,结果表明,采用所提出的自动调平双闭环模糊PID控制方法,在15°坡地上调平时间为12. 5 s,调平误差小于0. 5°,且无超调现象,左右两后轮摆角绝对值差在±1°以内;同时,以1. 98 km/h的速度行驶在高低起伏的恶劣工作环境下,车身倾斜角可控制在±3°范围内,左右摆动机构摆动角度绝对值差在±5°范围内,相比于双闭环PID控制效果更优。  相似文献   

6.
遥控全向调平山地履带拖拉机设计与性能试验   总被引:1,自引:0,他引:1  
针对传统拖拉机坡地行驶及作业时稳定性差、安全性不高、操纵复杂等问题,设计了一种遥控全向调平山地履带拖拉机(简称山地拖拉机)。首先,在分析山地拖拉机调平原理的基础上,提出基于平行四杆机构的车身横向调平方案和基于双车架机构的纵向调平方案;其次,对山地拖拉机的全向调平装置、行走系、基于静液压驱动装置(HST)的无级调速传动系统、多功能液压系统、坡地适应液压悬挂装置等关键部件进行设计和相应的匹配选型;最后,对山地拖拉机进行了整机性能试验。试验表明,拖拉机在0°~15°的横向坡地和0°~10°的纵向坡地可以实现车身横、纵向的调平,有效提高了拖拉机坡地行驶和作业的稳定性;拖拉机可实现0~8km/h的无级调速,满足平地行驶、爬坡、等高线作业等多种工况的速度要求;可遥控实现山地拖拉机行车、制动、转向、全向(横向和纵向)调平、农具升降及姿态调整等动作,极大地提高了操纵的便捷性;山地拖拉机的接地比压为0.025MPa,在松软路面和沼泽地均具有良好的通过性;山地拖拉机的转向机动性能良好,最小转弯半径为1728mm,可适应丘陵山地相对狭小的坡地作业环境;山地拖拉机的平地偏驶率为5.5%,在15°坡地车身调平后的偏驶率为5.75%,小于车身未调平时偏驶率8.62%,均满足相应国家标准(≤6%)要求;液压悬挂装置的最大提升力为8.2kN,满足基本的作业需求;坡地旋耕的耕深稳定性满足国家标准(≥85%)要求。  相似文献   

7.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65hm2/h,犁耕作业平均生产率为0.36hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

8.
山地拖拉机车身自动调平控制系统的设计   总被引:5,自引:0,他引:5  
所设计的车身自动调平控制系统主要由单片机STC89C52、单轴倾角传感器和限位开关组成,通过单片机处理倾角传感器和限位开关的信号,做出调平决策,然后通过控制液压缸缸体的运动使山地拖拉机在工作过程中可以实现车身自动调平。该车身自动调平控制系统可以使山地拖拉机满足在丘陵山区的工作要求。  相似文献   

9.
针对广西丘陵山地15°~25°坡地的经济作物种植园区坡度较大、地块分散、缺少机耕道,现有机械化割草机具难以进入并进行作业的难题,结合种植园区生草栽培的农艺技术,研发一种可遥控的履带割草机。根据园区作业环境的割草机工况要求,对整机及关键部件如履带行走系统、切割系统、变割草高度调节系统等进行计算分析与设计;设计并进行整机性能试验,实验结果表明,该割草机动力充足,最大纵向爬坡角度为36°,最大斜向爬坡角度为41°,在增程系统作用下,综合工况下作业时间由1.5 h延长至1.8 h;最小转弯半径为403.5 mm;对割草机的遥控操作性能做直线行走试验,测试路段试验最大偏驶角度不大于3°;倾翻试验台架测试纵向倾翻稳定角为48.9°,横向倾翻稳定角为64.4°;在广西某机械化茶园示范区进行割草试验,平均割草率为95%;可通过遥控实现割草机的行走、制动、转向和割草刀具高度调节,满足丘陵山地作物园区作业需求。  相似文献   

10.
我国甘蔗种植区域主要在缓坡和丘陵地,为更好地开展履带式甘蔗收割机丘陵山地作业,需对履带式收割机的坡道行驶稳定性进行分析。以两履带与四履带式甘蔗收割机为研究对象,以极限倾翻角为评价指标,对两机纵、横坡倾翻稳定性进行理论分析。利用RecurDyn仿真软件对两机坡道行驶稳定性进行仿真。仿真结果显示:两履带式(输送臂水平旋转0°、+90°)、四履带式的纵上坡极限倾翻角仿真值分别为24.0°、31.0°、35.0°。两履带式(输送臂水平旋转0°、+90°)、四履带式的纵下坡极限倾翻角仿真值分别为36.0°、32.0°、27.0°。两履带式输送臂水平旋转+90°时纵上坡行驶稳定性比水平旋转0°时好,四履带式纵上坡行驶稳定性比两履带式好,纵下坡行驶稳定性则相反。两履带式(输送臂水平旋转-90°、0°、+90°)、四履带式的横坡极限倾翻角仿真值分别为21.0°、18.0°、12.0°、16.0°。两履带式输送臂水平旋转角度与横坡倾斜角度相反,行驶稳定性越好。四履带式横坡行驶稳定性比两履带式输送臂为+90°时好,比两履带输送臂为-90°、0°时差。研究结果表明:四履带式坡道行驶稳定性比两履带式好,更适应...  相似文献   

11.
针对丘陵山地拖拉机作业环境复杂,对拖拉机的稳定性、通过性和地形适应性要求高的突出问题,设计了一种可进行姿态调平的丘陵山地拖拉机,主要由姿态调整后驱动桥、姿态调整前驱动桥、发动机及电液控制系统组成。姿态调整后,驱动桥设置有可独立回转摆动的轮边减速机构,实现了驱动桥刚性结构柔性调节。姿态调整前驱动桥可围绕拖拉机摇摆轴进行姿态调节。电液控制系统实时监测前、后驱动桥与地面间的坡度夹角变化,自动调节驱动桥的摆动姿态,始终使机身处于水平姿态,提高整机作业稳定性。  相似文献   

12.
针对目前果园采摘作业平台在升降调平过程中不够稳定、无法承受较大载荷、人身安全得不到保障的问题,通过理论分析、三维模型设计、性能试验相结合的方法,设计一种果园采摘作业平台升降调平机构。主要对该机构中的剪叉式升降架、左右调节支架、前后调节支架进行设计,对该机构的升降、上坡调平、下坡调平进行分析,并就相关参数进行分析计算,对样机进行模拟工作环境下的性能测试。试验结果表明:该样机最大举升高度1 535 mm,最大举升重量1 240 kg,平台举升时间28 s,角度调平范围±10°,调平最大误差±1°,满足设计要求,升降调平稳定可靠。  相似文献   

13.
为提高水田自走式喷雾机喷施作业均匀性,设计了喷杆自动调平系统,包括自动调平机械结构、喷雾机车身倾角传感器和控制器,以及车身倾角传感器和控制器的硬件系统和软件系统,并研究了对加速度计和陀螺仪数据进行融合的卡尔曼滤波算法和喷杆自动调平PID控制算法。以井关JKB18C型喷雾机为平台,采用叉车调节喷雾机车身倾斜角度,用2台MTI-300高精度惯性传感器分别测量喷雾机车身和喷杆倾角,并进行了测试试验。结果表明:随着车身倾角变化速率的增加,喷杆倾斜角度的平均绝对误差、均方根误差和最大误差增大,平均绝对误差最大为0. 90°,均方根误差最大为1. 39°,最大误差为1. 70°,车身倾角变化速率对喷杆控制精度影响较大。为检测喷杆自动调平控制系统的田间作业性能,采用双天线RTK-GNSS导航定位系统测量喷雾机作业过程中喷杆水平倾角,并进行了田间试验。试验结果表明:喷杆相对于水平面的平均绝对误差最大为0.79°,均方根误差最大为0. 85°,最大误差为1. 70°,喷杆自动调平控制系统可以有效地控制喷杆的水平姿态。  相似文献   

14.
山地履带拖拉机坡地等高线作业土壤压实应力研究   总被引:1,自引:0,他引:1  
山地履带拖拉机(配备姿态调整机构)具有良好的稳定性和越障性能,特别适宜在丘陵山区坡地作业,然而由于坡地角的存在导致拖拉机两侧履带下的应力分布极不均匀,使得拖拉机附着性和通过性均降低。本文针对山地履带拖拉机坡地等高线行驶/作业时,坡地土壤内部应力分布规律不明确以及如何提高应力均匀性缓解土壤压实等问题,在深入分析坡地工况下履带最大接地比压与应力传递基本规律的基础上,采用EDEM-RecurDyn耦合方法进行了仿真试验,并采取土压力盒埋设法分别开展了基于小型坡地土槽的静态试验和坡地试验田的动态试验;其中,静态试验探究了不同深度土壤在含水率、初始紧实度、加载质量及坡地角等影响下的垂直应力分布规律;动态试验探究了山地履带拖拉机坡地等高线行驶/旋耕作业时履带下方土壤应力随作业速度、车身状态(调平/未调平)及牵引负载的变化规律;并分析了履带张紧力对土壤垂直、水平应力分布的影响。试验结果表明:履带下垂直应力在各支重轮的轴线处呈现一个应力峰值;水平应力在各支重轮轴线的前、后方分别出现一个应力峰值;适当增大作业速度,可减小土壤内部垂直和水平应力峰值,拖拉机速度由0.5 km/h增加到1.5 km/h,垂直...  相似文献   

15.
针对山地履带拖拉机(简称山地拖拉机)等高线作业时,车身调平和农具仿形作业不同的姿态调整需求,在建立车身及农具运动学模型的基础之上,构建了整个系统的控制策略,设计了车身与农具姿态协同控制系统,其中,对车身和农具的控制分别采用PID算法和双闭环模糊PID算法.基于Simulink对控制算法进行了仿真分析,结果表明:采用PI...  相似文献   

16.
为了促进国产山地拖拉机发展,选择自主研发的404P型山地拖拉机作为研究对象,对液压调平系统工作原理进行分析,建立车身高度和提升液压缸总长的函数关系,基于AMEsim软件平台构建液压调平系统的仿真模型并进行液压作业仿真。结果表明:当车身倾斜4°时液压系统调平时间为1.25 s,8°时调平时间为2.44 s,12°时调平时间为3.6 s。试验结果表明该液压系统基本满足实际作业需求。   相似文献   

17.
针对贵州山地土质松软,田块面积小、坡度大,现有辣椒收获机在山地上行驶困难等问题,设计一种适用于丘陵山地的履带自走式辣椒收获机,并以该收获机的底盘为对象,研究收获机在山地行驶过程中的通过性和稳定性。利用RecurDyn对底盘在横坡行驶、纵坡行驶、翻越垂直壁和跨越壕沟等过程进行仿真。仿真结果表明,收获机在黏土路面上满载行驶时,横坡行驶最大坡度角为22°,纵坡上坡最大坡度角为30°,纵坡下坡最大坡度角为21°,翻越垂直壁最大高度为510 mm,跨越壕沟最大宽度为1 020 mm。田间试验结果表明,收获机纵坡上坡、翻越垂直壁和跨越壕沟的极限值与仿真结果的相对误差分别为10%、1.96%和3.92%,吻合度较高。试验验证了收获机在行驶过程中具有较好的稳定性和通过性,能够满足现阶段贵州山地辣椒采收要求。  相似文献   

18.
V形犁式无沟铺管机为暗管排水控盐技术提供强有力的工程支撑。为解决无沟铺管机在施工时会出现以较快速度倾斜,导致挂载架摆动幅度偏大,而引起挂载架后下控制臂水平检测精度降低的问题,通过分析无沟铺管机组成结构及控制机构数学模型,提出了一种基于风险控制的自适应补偿水平检测方法。该算法使用Kalman滤波算法得到车架的水平倾角和挂载架后下控制臂的水平倾角两组检测值,通过无沟铺管机的控制结构特性,确定两组水平倾角的关系,然后利用后下控制臂纵向加速度,对后下控制臂水平检测准确性进行风险评估,根据评估的风险对该两组检测值进行自适应加权,获取较精确的水平倾角信息。经过静态检测试验表明了该方法前后方向最大波动幅度为0.858°,左右方向最大波动幅度为0.778°,能够满足无沟铺管机的检测需求;经过动态检测试验表明了该方法能够比原始方法提前10.8 s得到有效的目标倾斜角度,且检测的倾角与目标角度最大波动量为0.69°,波动范围较小,提高了后下控制臂动态水平检测精度和速度。  相似文献   

19.
因田间地表起伏,高地隙施药机在作业过程中车体极易发生横滚方向的倾斜,同车体刚性连接的喷杆同时倾斜,甚至与作物、地面碰触,影响喷药均匀性和作业安全性.为此基于机电液一体化控制方法,设计了高地隙施药机喷杆自动调平系统.设计电控液压调平机构,使喷杆与车体柔性联接,实现在横滚方向上喷杆与车体的相对转动.采用姿态测量方法实时检测...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号