首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to today’s trend towards ‘green’ products, the environmentally conscious manufacturers are moving toward lead-free schemes for electronic devices and components. Nowadays the bumping process has become a branch of the infrastructure of flip chip bonding technology. However, the formation of excessively brittle intermetallic compound (IMC) between under bump metallurgy (UBM)/solder bump interface influences the strength of solder bumps within flip chips, and may create a package reliability issue. Based on the above reason, this study investigated the mechanical behavior of lead-free solder bumps affected by the solder/UBM IMC formation in the duration of isothermal aging. To attain the objective, the test vehicles of Sn–Ag (lead-free) and Sn–Pb solder bump systems designed in different solder volumes as well as UBM diameters were used to experimentally characterize their mechanical behavior. It is worth to mention that, to study the IMC growth mechanism and the mechanical behavior of a electroplated solder bump on a Ti/Cu/Ni UBM layer fabricated on a copper chip, the test vehicles are composed of, from bottom to top, a copper metal pad on silicon substrate, a Ti/Cu/Ni UBM layer and electroplated solder bumps. By way of metallurgical microscope and scanning-electron-microscope (SEM) observation, the interfacial microstructure of test vehicles was measured and analyzed. In addition, a bump shear test was utilized to determine the strength of solder bumps. Different shear displacement rates were selected to study the time-dependent failure mechanism of the solder bumps. The results indicated that after isothermal aging treatment at 150 °C for over 1000 h, the Sn–Ag solder revealed a better maintenance of bump strength than that of the Sn–Pb solder, and the Sn–Pb solder showed a higher IMC growth rate than that of Sn–Ag solder. In addition, it was concluded that the test vehicles of copper chip with the selected Ti/Cu/Ni UBMs showed good bump strength in both the Sn–Ag and Sn–Pb systems as the IMC grows. Furthermore, the study of shear displacement rate effect on the solder bump strength indicates that the analysis of bump strength versus thermal aging time should be identified as a qualitative analysis for solder bump strength determination rather than a quantitative one. In terms of the solder bump volume and the UBM size effects, neither the Sn–Ag nor the Sn–Pb solders showed any significant effect on the IMC growth rate.  相似文献   

2.
Shear and tensile tests were carried out on joints made with an isotropic conductive adhesive (ICA) consisting of Ag and epoxy: Sn–Pb plated components mounted on printed boards and tensile bars consisting of Sn plated Ni and Cu joined under various joining pressures. After 150 °C–100 h, shear strength degraded to 72% and Sn in the plating diffused slightly to the Ag fillers in the ICA for the component mounting. High joining pressure increased the initial tensile strength and volume percentage of Ag fillers in the ICA. After 150 °C–100 h, tensile strengths for all joining pressures degraded on average to 36% of the initial strengths. In the case of low joining pressures, an Ag–Sn intermetallic was formed at only the Ag–Sn contact points of the Sn/ICA interface; leading to reproducibility of the component mounting. The difference of degradation ratios between the mounted components and tensile bars could be explained by the offset of the Sn–Pb area at the component/ICA interface.  相似文献   

3.
Since both Ag and In are important melting point depressants in Sn–Zn based solders, a series Sn–Zn based solders with various amounts of Ag and In additions was studied in the experiment. The melting behavior of solder alloys, wetting characteristics, coefficients of thermal expansion, microstructural evolution and long-term reliability of the selected Sn–Zn based solder on Au/Ni–P metallized copper substrate were examined. Based on the experimental result, there is little change in the melting range of Sn–Zn based solder alloys by minor addition of Ag. On the contrary, the melting point of Sn–Zn based alloys can be effectively decreased by In additions. However, the difference between solidus and liquidus temperature is broadened as the increment of In into Sn–Zn based solders. 76Sn–9Zn–15In has the lowest liquidus temperature among all alloys, and it can effectively bond the Au/Ni–P metallized copper substrate. The microstructure of 76Sn–9Zn–15In alloy soldered at 200 °C for 20 min is primarily comprised of Sn–In γ phase and needle-like ZnO2. Since there is no flux usage during soldering, zinc oxide cannot be avoided even the process performed under 2×10−2 mbar vacuum environment. It is also noted that there is no interfacial reaction layer between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate after soldering. However, there is a reaction layer between 76Sn–9Zn–15In and substrate as the soldered specimen aged at 90 °C for 168 h. Its chemical composition is close to Zn-rich γ phase (NiZn3) alloyed with minor Sn, In, Cu and P. For the specimen further aged at 90 °C for 336 h, there are cracks along the interface between solder alloy and electroless Ni–P layer. The oxidation of the interfacial Zn-rich γ phase plays an important role in deterioration of the bonding between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate.  相似文献   

4.
We examine electromigration fatigue reliability and morphological patterns of Sn–37Pb and Sn–3Ag–1.5Cu/Sn–3Ag–0.5Cu composite solder bumps in a flip–chip package assembly with Ti/Ni(V)/Cu UBM. The flip–chip test vehicle was subjected to test conditions of five combinations of applied electric currents and ambient temperatures, namely, 0.4 A/150 °C, 0.5 A/150 °C, 0.6 A/125 °C, 0.6 A/135 °C, and 0.6 A/150 °C. The electrothermal coupling analysis was employed to investigate the current crowding effect and maximum temperature in the solder bump in order to correlate with the experimental electromigration reliability using the Black’s equation as a reliability model. From available electromigration reliability models, we also present a comparison between fatigue lives of Sn–37Pb solder bumps with Ti/Ni(V)/Cu and those with Al/Ni(V)/Cu UBM under different current stressing conditions.  相似文献   

5.
Aging and accelerated thermal cycling (ATC) have been performed on 2512 chip resistors assembled with Sn3.8Ag0.7Cu (wt.%) solder. The boards were finished with immersion Ag (IAg), electroless nickel/immersion gold (ENIG), and hot air solder leveling Sn–Pb eutectic solder (HASL), and the components’ terminations were finished with 100% Sn and Sn8.0Pb (wt.%). The boards were reflowed with an average cooling rate of 1.6 °C/s. It was found that the microstructure and reliability of the solder joints depended on the board surface finish. The boards containing small amounts of Pb (from board/component terminations) were the most reliable. Solder joints to copper showed a significantly higher number of cycles to first failure than the joints on nickel. Better reliability of the Sn3.8Ag0.7Cu/Cu joints was attributed to an increased copper content in the bulk due to substrate dissolution.  相似文献   

6.
The effects of the fourth elements, i.e., Fe, Ni, Co, Mn and Ti, on microstructural features, undercooling characteristics, and monotonic tensile properties of Sn–3 wt.%Ag–0.5 wt.%Cu lead-free solder were investigated. All quaternary alloys basically form third intermetallic compounds in addition to fine Ag3Sn and Cu6Sn5 and exhibit improved solder structure. The precipitates of Sn–3Ag–0.5Cu (–0.1 wt.%X; X=Ni, Ti and Mn) alloy are very fine comparing with the other alloys. The effective elements for suppressing undercooling in solidification are Ti, Mn, Co and Ni. All quaternary bulk alloys exhibit similar or slightly larger tensile strengths; especially Mn and Ni can improve elongation without degrading strength. The interfacial phases of Sn–3Ag–0.5Cu (–0.1 wt.%X; X=Fe, Mn and Ti)/Cu joints are typical Cu6Sn5 scallops. Sn–3Ag–0.5Cu (–0.1 wt.%X; X=Ni and Co)/Cu joints form very fine Sn–Cu–Ni and Sn–Cu–Co scallops at interface. The Cu/Sn–3Ag–0.5Cu–0.1Ni/Cu joint exhibits improved tensile strength prior to thermal aging at 125 and 150 °C. The fracture surface of Cu/Sn–3Ag–0.5Cu/Cu joint exhibits mixture of ductile and brittle fractures, while Cu/Sn–3Ag–0.5Cu (–0.1X; X=Ni and Co)/Cu joints exhibit only brittle fracture at interface. The Sn–3Ag–0.5Cu–0.1Ni alloy is more reliable solder alloy with improved properties for all tests in the present work.  相似文献   

7.
A digital image correlation (DIC) algorithm was employed to measure microscopic strain-field evolution in shear-loaded model solder interconnections made out of a number of Sn-based alloys. Four different solder alloys studied were Sn–36Pb–2Ag, Sn–3.8Ag–0.7Cu (SAC), Sn–3.3Ag–3.82Bi, and Sn–8Zn–3Bi. The measured strain fields were correlated with damage observed at the scale of the sample, and at microscopic length scales.Local strain differs significantly from applied global strain and has been shown to depend on the geometry of the samples as well as the microstructure (on a grain level) of the solder.Strain fields in all solder interconnections were found to localize near but not at the solder–substrate interface and along grain boundaries in the solders. The eventual failure path as observed on the scale of the sample (parallel to the two solder–substrate interfaces with a cross-over from one interface to the other somewhere in the connection) showed a good correlation with measured strain fields in all interconnections.In contrast to the similarity on a macroscopic scale, on a microscopic scale the failure mechanisms were observed to be material specific.  相似文献   

8.
Wave soldering with low solid fluxes at temperatures as low as 175°C on test boards with a Cu/Imidazole surface finish has been shown to be feasible using a Pb-free, Bi-45%Sn-0.33%Ag solder that melts at temperatures of ∼140∼145°C. Other surface finishes such as Pd/Ni, Au/Ni, and Bi exhibit unacceptable soldering at temperatures below 210°C. Intermediate in performance are Sn surface finishes, which exhibit acceptable soldering at 190°C, but not at 175°C. Acceptable joints wave soldered on Cu/Im finishes passed class I/II inspection criterion and exhibited pull strengths in excess of the ultimate strength of the component leads.  相似文献   

9.
The reliability evaluation of Cu and Sn/Ni joined with isotropic conductive adhesives (ICAs) including Ag–Sn alloy fillers with or without Ag plating instead of Ag fillers was examined using tensile tests, electrical resistivity tests and microstructural observations. For an ICA, including Ag–Sn alloy fillers added to Sn–58wt%Bi fillers, the tensile strength was found to improve, but the electrical resistivity worsened with 150 °C heat exposure. An ICA, including, Ag–Sn alloy fillers with Ag plating, was able to maintain electrical resistivity after being subjected to 150 °C heat exposure. The Ag plating on the Ag–Sn fillers reacted with the Sn in the Ag–Sn fillers, leading to the joining of the fillers with each other though metallurgical connections, and the transformation of Ag into Ag3Sn within a 1-h curing time at 150 °C, since the Ag plating was microscopic and active. After heat exposure, the Sn distributed itself along the substrate/ICA interface by the diffusion of Sn though the connected fillers, and Cu3Sn formed at the Cu/ICA interface, in contrast with the Ag–Sn alloy fillers without Ag plating.  相似文献   

10.
The reliability of Sn–Ag–Cu–Ce lead-free soldered joints in quad flat packages under thermal cycling was investigated based on finite element simulation and experiments. The stress and strain response of fine pitch QFP device lead-free soldered joints were analyzed using finite element method based on Garofalo–Arrhenius model. The simulated results indicate that the creep distribution is not uniform, the heel of joints is the maximum creep strain concentrated sites. And comparisons were then made with experimental results of the cracks observed in the Sn–Ag–Cu–Ce soldered joints subjected to the temperature cycled experiment. In addition, the relative mechanical and metallurgical factors, which dominate the failure of soldered joints, were utilized to analyze the phenomena. The fracture surfaces indicate that crack initiate and propagate along the interface among bulk Cu6Sn5 phases in Sn–Ag–Cu–Ce soldered joints.  相似文献   

11.
Board-level drop impact testing is a useful way to characterize the drop durability of the different soldered assemblies onto the printed circuit board (PCB). The characterization process is critical to the lead-free (Pb-free) solders that are replacing lead-based (Pb-based) solders. In this study, drop impact solder joint reliability for plastic ball grid array (PBGA), very-thin quad flat no-lead (VQFN) and plastic quad flat pack (PQFP) packages was investigated for Pb-based (62Sn–36Pb–2Ag) and Pb-free (Sn–4Ag–0.5Cu) soldered assemblies onto different PCB surface finishes of OSP (organic solderability preservative) and ENIG (electroless nickel immersion gold). The Pb-free solder joints on ENIG finish revealed weaker drop reliability performance than the OSP finish. The formation of the brittle intermetallic compound (IMC) Cu–Ni–Sn has led to detrimental interfacial fracture of the PBGA solder joints. For both Pb-based and Pb-free solders onto OSP coated copper pad, the formation of Cu6Sn5 IMC resulted in different failure sites and modes. The failures migrated to the PCB copper traces and resin layers instead. The VQFN package is the most resistant to drop impact failures due to its small size and weight. The compliant leads of the PQFP are more resistant to drop failures compared to the PBGA solder joints.  相似文献   

12.
The ball impact test (BIT) was developed based on the demand of a package-level measure of the board-level reliability of solder joints in the sense that it leads to brittle intermetallic fracturing, similar to that from a board-level drop test. The BIT itself stands alone as a unique and novel test methodology in characterizing strengths of solder joints under a high-speed shearing load. In this work, the BIT apparatus, characteristics of measured impact force profiles, and induced failure modes are introduced. We also present BIT results conducted on 63Sn–37Pb, 95.5Sn–4Ag–0.5Cu, and 98.5Sn–1Ag–0.5Cu package-level solder joints, bonded on substrate pads of different surface finishes, under an impact velocity of 1 m/s or 1.25 m/s.  相似文献   

13.
The effects of plating materials (Sn-10Pb, Sn-3.5Ag, Sn-3Bi, Sn-0.7Cu, and Au/Pd/Ni) on Cu leads on quad flat package (QFP) joints using a Sn-8Zn-3Bi solder were investigated. The joints with Sn-3.5Ag plating and Sn-8Zn-3Bi solder had the slowest growth rate of interfacial reaction layers and the highest strength. The Ag dissolution into the interfacial reaction layers causes this increased strength. The Sn-Ag plating is the best plating material for Cu leads among the five kinds of plating using Sn-8Zn-3Bi solder.  相似文献   

14.
The relation between the whisker growth and intermetallic on various lead-free finish materials that have been stored at ambient condition for 2 yrs (6.3 × 107 s) is investigated. The matte Sn plated leadframe (LF) had the needle-shaped whisker and the nodule-shaped whisker was observed on the semi-bright Sn plated LF. Both the Sn plated LFs had a same columnar grain structure and both whiskers were grown in connection with the scalloped intermetallic compound (IMC) layer. The morphology of the IMC layer is similar, regardless of the area which has whisker or not. On the Sn–Bi finish and bright Sn plated LF, hillock-shaped and sparsely grown branch-shaped whiskers were observed, respectively. The IMC grew irregularly under both the areas with or without whisker. The IMC growth along the Sn grain boundaries generated inner compressive stress at the plating layer. Atomic force microscopy (AFM) profiling analysis is useful for characterization the IMC growth on the Sn and Cu interface. The measured root mean square (RMS) values IMC roughness on semi-bright Sn, matte Sn, and bright Sn plated LF were 1.82 μm, 1.46 μm, and 0.63 μm, respectively. However, there is no direct relation between whisker growth and the RMS value. Two layers of η′-Cu6Sn5 were observed using field emission transmission electron microscopy (FE-TEM): fine grains and coarse grains existed over the fine grains.  相似文献   

15.
The creep behaviour of Sn96.5Ag3.5- and Sn95.5Ag3.8Cu0.7-solder was studied specifically for its dependence on technological and environmental factors. The technological factors considered were typical cooling rates and pad metallizations for solder joints in electronic packaging. The environmental factors included microstructural changes as a result of thermal aging of solder joints. Creep experiments were conducted on three types of specimens—flip–chip joints, PCB solder joints and bulk specimens. flip–chip specimens were altered through the selection of various under bump metallizations (Cu vs. NiAu), cooling rates (40 K/min vs. 120 K/min), and thermal storage (24 h, 168 h, and 1176 h at 125 °C). PCB solder joints were studied by using a copper pin soldered into a thru-hole connection on a printed circuit board having a NiAu metallization. Bulk specimens contained the pure alloys. The creep behaviour of the SnAg and SnAgCu solders varied in dependence of specimen type, pad metallization and aging condition. Constitutive models for SnAg and SnAgCu solders as they depend on the reviewed factors are provided.  相似文献   

16.
In this study, addition of Ag micro-particles with a content in the range between 0 and 4 wt.% to a Sn–Zn eutectic solder, were examined in order to understand the effect of Ag additions on the microstructural and mechanical properties as well as the thermal behavior of the composite solder formed. The shear strengths and the interfacial reactions of Sn–Zn micro-composite eutectic solders with Au/Ni/Cu ball grid array (BGA) pad metallizations were systematically investigated. Three distinct intermetallic compound (IMC) layers were formed at the solder interface of the Au/electrolytic Ni/Cu bond pads with the Sn–Zn composite alloys. The more Ag particles that were added to the Sn–Zn solder, the more Ag–Zn compound formed to thicken the uppermost IMC layer. The dissolved Ag–Zn IMCs formed in the bulk solder redeposited over the initially formed interfacial Au–Zn IMC layer, which prevented the whole IMC layer lifting-off from the pad surface. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces.  相似文献   

17.
In order to investigate the fracture behavior of Sn–3.0Ag–0.5Cu solder bump, solder balls with the diameter of 0.76 mm were soldered on Cu pad in this study, then high speed impact test and static shear test of solder bumps were carried out to measure the joint strength of the soldering interface. The effect of isothermal aging on joint strength as well as fracture behavior of solder bumps was investigated, and the composition of the fracture surface was identified by means of EPMA. The results indicate that the fracture is inside the bulk solder in low speed shear test regardless of the aging effect, thus the maximum load reflects the solder strength rather than the interfacial strength. It is also found that under 1 m/s impact loading, the crack initiation position is changed from solder/Cu6Sn5 interface to Cu3Sn/Cu interface after long time isothermal aging, and the fracture occurs inside the bulk solder accompanying with intermetallic compound in both of the as-soldered and aged joints. The thickened multiple IMC layers during isothermal aging account for the degraded impact resistance, and the change of the solder matrix is another factor for reduced impact resistance owing to Sn residue on the fracture surface.  相似文献   

18.
Tin whisker formation of lead-free plated leadframes   总被引:3,自引:1,他引:2  
This paper presents the evaluation results of whiskers on two kinds of lead-free finish materials at the plating temperature and under the reliability test. The rising plating temperature caused increasing the size of plating grain and shorting the growth of whisker. The whisker was grown under the temperature cycling the bent shaped in matte pure Sn finish and hillock shape in matte Sn–Bi. The whisker growth in Sn–Bi finish was shorter than that in Sn finish. In FeNi42 leadframe, the 8.0–10.0 μm diameter and the 25.0–45.0 μm long whisker was grown under 300 cycles. In the 300 cycles of Cu leadframe, only the nodule-shaped grew on the surface, and in the 600 cycles, a 3.0–4.0 μm short whisker grew. After 600 cycles, the 0.25 μm thin Ni3Sn4 formed on the Sn-plated FeNi42. However, we observed the amount of 0.76–1.14 μm thick Cu6Sn5 and 0.27 μm thin Cu3Sn intermetallics were observed between the Sn and Cu interfaces. Therefore, the main growth factor of a whisker is the intermetallic compound in the Cu leadframe, and the coefficient of thermal expansion mismatch in FeNi42.  相似文献   

19.
The Sn3.5Ag0.75Cu (SAC) solder joint reliability under thermal cycling was investigated by experiment and finite element method (FEM) analysis. SAC solder balls were reflowed on three Au metallization thicknesses, which are 0.1, 0.9, and 4.0 μm, respectively, by laser soldering. Little Cu–Ni–Au–Sn intermetallic compound (IMC) was formed at the interface of solder joints with 0.1 μm Au metallization even after 1000 thermal cycles. The morphology of AuSn4 IMC with a small amount of Ni and Cu changed gradually from needle- to chunky-type for the solder joints with 0.9 μm Au metallization during thermal cycling. For solder joints with 4 μm Au metallization, the interfacial morphology between AuSn4 and solder bulk became smoother, and AuSn4 grew at the expense of AuSn and AuSn2. The cracks mainly occurred through solder near the interface of solder/IMC on the component side for solder joints with 0.1 μm Au metallization after thermal shock, and the failure was characterized by intergranular cracking. The cracks of solder joints with 0.9 μm Au metallization were also observed at the same location, but the crack was not so significant. Only micro-cracks were found on the AuSn4 IMC surface for solder joints with 4.0 μm Au metallization. The responses of stress and strain were investigated with nonlinear FEM, and the results correlated well with the experimental results.  相似文献   

20.
Copper (Cu) has been widely used in the under bump metallurgy of chip and substrate metallization for chip packaging. However, due to the rapid formation of Cu–Sn intermetallic compound (IMC) at the tin-based solder/Cu interface during solder reaction, the reliability of this type of solder joint is a serious concern. In this work, electroless nickel–phosphorous (Ni–P) layer was deposited on the Cu pad of the flexible substrate as a diffusion barrier between Cu and the solder materials. The deposition was carried out in a commercial acidic sodium hypophosphite bath at 85 °C for different pH values. It was found that for the same deposition time period, higher pH bath composition (mild acidic) yields thicker Ni–P layer with lower phosphorous content. Solder balls having composition 62%Sn–36%Pb–2%Ag were reflowed at 240 °C for 1 to 180 min on three types of electroless Ni–P layers deposited at the pH value of 4, 4.8 and 6, respectively. Thermal stability of the electroless Ni–P barrier layer against the Sn–36%Pb–2%Ag solder reflowed for different time periods was examined by scanning electron microscopy equipped with energy dispersed X-ray. Solder ball shear test was performed in order to find out the relationship between the mechanical strength of solder joints and the characteristics of the electroless Ni–P layer deposited.The layer deposited in the pH 4 acidic bath showed the weak barrier against reflow soldering whereas layer deposited in pH 6 acidic bath showed better barrier against reflow soldering. Mechanical strength of the joints were deteriorated quickly in the layer deposited at pH 4 acidic bath, which was found to be thin and has a high phosphorous content. From the cross-sectional studies and fracture surface analyses, it was found that the appearance of the dark crystalline phosphorous-rich Ni layer weakened the interface and hence lower solder ball shear strength. Ni–Sn IMC formed at the interfaces was found to be more stable at the low phosphorous content (14 at.%) layer. Electroless Ni–P deposited at mild acidic bath resulting phosphorous content of around 14 at.% is suggested as the best barrier layer for Sn–36%Pb–2%Ag solder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号