首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
SiC晶须增强陶瓷基复合材料的研究   总被引:2,自引:0,他引:2  
用不同的Al_2O_3粉料,采用SiC晶须补强以及加入第三相SiC粒子弥散增韧的方式,研究了SiC晶须Al_2O_3基复合材料的力学性能,得到强度σ_f=780MPa,K_(Ic)=7.6MPa·m~(1/2)的结果。通过不同的分敌途径,对晶须分散效果进行了实验观察和探讨;并讨论了晶须的分散均匀性对力学性能的影响。同时,就晶须团聚体在增韧过程中所起的作用提出了一种新的、可能的增韧机制,合理地解释了实验结果。最后,就三元复合系统中晶须补强和弥散增韧两种途径的迭加效果进行了讨论。  相似文献   

2.
本文综述了目前国内外纤维增强的生物活性玻璃陶恣材料的发展状况,利用断裂力学的原理分析了纤维在复合材料中的作用,并从理化相容性方面论述了纤维增强的必备条件。  相似文献   

3.
碳纤维增强碳化硅基复合材料的研究   总被引:1,自引:0,他引:1  
碳纤维增强碳化硅基复合材料(Cf/SiC)具有良好的力学性能,作为特殊结构的功能材料,是航空航天领域和新能源领域的研究热点之一。本文主要阐述了增强相碳纤维的发展,复合材料的基体复合技术,以及复合材料界面相的研究,并展望了碳纤维复合材料在高新技术领域中的应用与发展前景。  相似文献   

4.
SiC陶瓷及其复合材料连接的研究进展   总被引:1,自引:0,他引:1  
SiC陶瓷及其复合材料(SiCf/SiC、Cf/SiC)由于具有优良的高温强度、耐磨和抗腐蚀的性能而被广泛关注,而SiC陶瓷及其复合材料的连接是获得这一性能的关键技术之一。综述了SiC陶瓷及其复合材料连接的一般方法和连接技术,同时指出了连接技术的发展趋势。  相似文献   

5.
赵彦钊  周忠慎 《陶瓷》1995,(4):7-10
本文研究了以碳纤维增强生物活性玻璃陶瓷复合材料的粉末烧结工艺,经碳纤维增强制成复合材料后,其脆性和力学性能得到显著改善,而生物活性保持不变,通过X-衍射,电子显微镜和电子探针微区分析等技术,确定了具有生物活性的玻璃陶瓷的结晶相,碳纤维的体积含量,初步探讨了碳纤维的增强增韧机理,结果表明,加入5%~9%(体积含量)碳纤维的复合材料,抗弯强度和断裂韧性分别比基体玻璃陶瓷提高3.5倍和2.5倍,同时研究  相似文献   

6.
本文研究了聚碳硅烷化学转化法制备C/SiC复合材料过程中碳纤维(CF)、碳化硅(SiC)基体的热物理性能对C/SiC复合材料性能的影响,并提出了一种可以提高复合材料抗氧化能力的简单有效的方法。  相似文献   

7.
介绍了5种主要SiC基体的成型方法,分别是化学气相渗透(CVI)、聚合物先驱体浸渍-裂解法(PIP)、液相硅渗透法(LSI)、反应烧结法、化学气相反应法(CVR)。阐述了各种基体的组织结构、致密效率及陶瓷基复合材料的性能,其中CVI+PIP/LSI的复合成型技术可达到优化的制备过程,提高基体的组织结构和致密化效率;C/C及C/SiC复合材料表面化学气相转换法SiC涂层及多层涂层技术是提高CMC抗氧化性能的有效途径,并已得到工程实际验证。  相似文献   

8.
采用包埋法制备了碳纤维增强碳(carbon fiber reinforced carb on composites,C/C)复合材料表面多层涂层,包括SiC,TiC内层,SiC,TiC中间层以及SiC+TiC复合外层。利用场发射扫描电镜和X射线衍射对其表面和断面的结构进行研究。结果显示:和TiC内层相比较,SiC内层较厚而且致密,具多孔结构且和C/C复合材料结合紧密;TiC内层较薄且和C/C复合材料结合松散。制备的SiC+TiC复合外层由SiC,TiC和Ti3SiC2组成。  相似文献   

9.
CVI法制备三维碳纤维增韧碳化硅复合材料   总被引:16,自引:4,他引:16  
利用三维编织的碳纤维预制体,采用等温CVI的方法制备出了碳纤维增韧碳化硅复合材料。对于无碳界面层的复合材料(C/SiC),弯曲强度和断裂韧性随密度的提高而提高,最大值分别为520MPa和16.5MPa·m^1/2。密度高的复合材料呈明显的脆性断裂,而密度较低的材料在断裂过程中存在纤维束的拔出而表现出韧性断裂行为。密度较高和无碳界面的复合材料,经1550℃高温处理后,弯曲强度明显降低(350MPa)  相似文献   

10.
基于Tanake-Mori基体平均应力以及Eshlby等效夹杂法,提出了1种求连续相材料的应力和应变的近似理论,由此可精确评估两相和3相复合材料的力学性能。本文利用计算机模拟对碳纤维增韧的氮化硅复合材料(Cf/Si3n4)的弹性模量、剪切模量和泊松比进行理论计算,从其内部微观结构出发,探讨了不同相含量、气孔的含量以及形状等复合材料力学性能的影响。  相似文献   

11.
碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领域和发展趋势。  相似文献   

12.
The grinding performance of unidirectional carbon fibre reinforced silicon carbide ceramic matrix composites (Cf/SiC) was investigated in this paper. The effects of the fibre orientation and grinding depth on the surface integrity and grinding forces and an understanding of the grinding mechanisms are the primary concerns of this article. This problem is relatively unexplored; therefore, the main value of this research is to improve the processing quality and reduce the production cost. In the Cf/SiC grinding procedure, cracks, fibre wear, interfacial debonding, fibre pull-out and outcrop can be detected on the ground surface. The grinding depth and deflection angle have been shown to have a notable influence on the surface quality in different datum planes. A suitable grinding depth and deflection angle should be carefully chosen to achieve good surface quality in different machined surfaces. Specifically, the surface quality decreases and the grinding forces increase with increasing grinding depth. In addition, greater grinding surface quality is observed at β?=?90°, i.e., γ?=?0°, but poorer machined surfaces are obtained at α?=?0°, i.e., γ?=?90°. The surface topography, roughness and grinding forces of unidirectional Cf/SiC could be forecasted according to the analysis conclusions. This research is expected to offer guidelines for increasing the machining quality of Cf/SiC.  相似文献   

13.
The evolution of matrix cracks in a melt‐infiltrated SiC/SiC ceramic matrix composite (CMC) under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. CMC modeling and life prediction strongly depend a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time‐temperature‐environment‐stress), and the interactions of matrix cracks with fibers and interfaces. In this work, strain relaxation due to matrix cracking, the relationship between CODs and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross‐section. This calls into question the modeling assumption of through‐cracks for all loading conditions and fiber architectures, which can obscure oxidation mechanisms that are active in realistic cracking conditions. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMCs at stresses well below the proportional limit.  相似文献   

14.
With the advantage of high temperature resistance, low expansion, low density and excellent thermal stability, carbon fiber reinforced ceramic composites have a very wide range of applications in aerospace, military, energy, chemical industries and transportation. Short carbon fiber reinforced ceramic composites are characterized by simple processes, low manufacturing costs, short preparation times and automated production, can be used in fields such as friction materials and thermal protection system. This paper reviews the current status and recent advances in research on homogenization techniques, mechanical properties, thermal properties and frictional properties of short carbon fiber reinforce ceramic composites. Different processing routes for short carbon fiber reinforced ceramic composites, including reactive melt infiltration (RMI), hot pressing (HP), spark plasma sintering (SPS) and pressureless sintering, the advantages and drawbacks of each method are briefly discussed. The future development direction of low-cost manufacturing short carbon fiber reinforced ceramic composites is prospected.  相似文献   

15.
《Ceramics International》2023,49(5):7833-7841
In this study, continuous carbon reinforced Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C–SiC high entropy ceramic matrix composites were additively manufactured through paper laminating (PL), direct slurry writing (DSW), and precursor infiltration and pyrolysis (PIP). (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C high entropy ceramic (HEC) powders were synthesized by pressureless sintering and ball milling. A certain proportion of HEC powder, SiC powder, water, binder, and dispersant were mixed to prepare the HEC-SiC slurry. Meanwhile, BN coating was prepared on the 2D fiber cloth surface by the boric acid-urea method and then the cloth was cut into required shape. Additive manufacturing were conducted subsequently. Firstly, one piece of the as-treated carbon fiber cloth was auto-placed on the workbench by paper laminating (PL). Then, the HEC-SiC slurry was extruded onto the surface of the cloth by direct slurry writing (DSW). PL and DSW process were repeated, and a Cf/HEC-SiC preform was obtained after 3 cycles. At last, the preform was densified by precursor infiltration and pyrolysis (PIP) and the final Cf/HEC-SiC composite was prepared. The open porosity of the Cf/HEC-SiC composites, with the HEC volume fractions of 15, 30 and 45%, were 7.7, 10.6, and 11.3%, respectively. And the density of the Cf/HEC-SiC composites, with the HEC volume fractions of 15, 30 and 45%, were 2.9, 2.7 and 2.3 g/cm3, respectively. The mechanical properties of the Cf/HEC-SiC composites increased firstly and then decreased with the HEC content increase, reaching the maximum value when the HEC volume fraction was 30%. The mechanical properties of the Cf/HEC-SiC composites containing 45, 30 and 15% HEC were as follows: flexural strength (180.4 ± 14 MPa, 183.7 ± 4 MPa, and 173.9 ± 4 MPa), fracture toughness (11.9 ± 0.17 MPa m1/2, 14.6 ± 2.89 MPa m1/2, and 11.3 ± 1.88 MPa m1/2), and tensile strength (71.5 ± 4.9 MPa, 98.4 ± 12.2 MPa, and 73.4 ± 8.5 MPa). From this study, the additive manufacturing of continuous carbon fiber reinforced high entropy ceramic matrix composites was achieved, opening a new insight into the manufacturing of ceramic matrix composites.  相似文献   

16.
短碳纤维增强铝基复合材料   总被引:4,自引:1,他引:4       下载免费PDF全文
高嵩  姚广春 《化工学报》2005,56(6):1130-1133
通过化学镀再电镀的方法,在碳纤维表面镀上Cu镀层,制备C/Cu复合丝,并在硼酸的保护下,利用非真空条件下的液态机械搅拌法制备短碳纤维增强铝基复合材料,研究了碳纤维在复合材料中的分散程度,铜镀层存在状态及C/Al复合材料的拉伸性能.实验结果表明:在硼酸存在下,大大降低了铜的氧化程度,碳纤维分散均匀且没有损伤,少量硼酸的加入,对复合材料的力学性能没有影响,该复合材料的抗拉强度随碳纤维含量的增加而增加,其抗拉强度较基体材料提高50%以上,但塑性指标却明显下降.  相似文献   

17.
《Ceramics International》2022,48(14):19542-19556
Fiber reinforced ceramic matrix composites (FRCMCs) have been used in various engineering fields. Additive manufacturing (AM) technologies provide new methods for fabricating FRCMCs and their structures. This review systematically reviews the additive manufacturing technologies of FRCMCs. In this review, the progress for additive manufacturing of FRCMCs were summarized firstly. The key scientific and technological challenges, and prospects were also discussed. This review aims to motivate the future research of the additive manufacturing of FRCMCs.  相似文献   

18.
The evolution of residual stresses found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite through thermal treatments was investigated using Raman microspectroscopy. Constituent stress states were measured before, during, and after exposures ranging from 900 to 1300°C for varying times between 1 and 60 minutes. Silicon carbide particles in the as-received condition exhibited average hydrostatic tensile stresses of approximately 300 MPa when measured at room temperature before and after heat treatment. The room temperature Raman profile of the silicon matrix was altered in both shape and location with heat treatment cycles due to increasing activation of boron within the silicon lattice as heat treatment temperatures increased. By accounting for boron activation in the silicon–boron system, little to no permanent change of any constituent stresses were observed, and the silicon matrix subsequently exhibited a complimentary average hydrostatic compressive stress of approximately 300 MPa at room temperature, measured before and after heat treatment. This result builds upon previous literature and offers increased insight into boron activation phenomena measured through Raman spectroscopy methods.  相似文献   

19.
The effect of microstructure on cracking was analyzed in a CMC using statistical methods. It was determined that the amounts of coating surrounding fibers and their dispersion within the matrix influenced where cracks evolved in transverse plies. Linear models predicted that maximum principal strains in transverse fiber coatings increased as (i) the fiber coating area increased and (ii) the length of matrix ligament between fibers decreased. Logistic models indicated that the likelihood of transverse fibers residing on a matrix crack increased as the (i) ratio of coating to filament decreased, (ii) distance between fibers decreased, or (iii) coating area increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号