首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro transdermal permeation of eight hydrophilic drugs (antipyrine, L-dopa, dopamine hydrochloride, diclofenac sodium, 5-fluorouracil, isoprenaline hydrochloride, nicorandil and morphine hydrochloride) and eight lipophilic drugs (aminopyrine, cyclobarbital, ibuprofen, indomethacin, isosorbide dinitrate, flurbiprofen, ketoprofen and lignocaine) was determined using shed snake skin of Elaphae obsoleta and human skin. The permeation parameters and physiological characteristics of the skin, e.g. the water and lipid content, and the thickness of shed snake skin and human skin were evaluated and compared. In shed snake skin, the permeability coefficients (P) of lipophilic drugs were in the same range as those through the human skin (0.9 to 1.8-times); whereas those of hydrophilic drugs were remarkably lower (3.3 to 6.1-times). The thickness and lipid content of shed snake skin and human stratum corneum were not significantly different (P > 0.05), whereas the water content of shed snake skin was significantly lower than that of human stratum corneum (P < 0.05). The lower permeability of shed snake skin for hydrophilic compounds might be caused by the lower porosity of skin strata. The results suggested a potential use of shed snake skin as barrier membrane for lipophilic compounds percutaneous absorption studies in vitro.  相似文献   

2.
Several studies have demonstrated that ceramides play an essential role in both the barrier and water-holding functions of healthy stratum corneum, suggesting that the dysfunction of the stratum corneum associated with ageing as well that observed in patients with several skin diseases could result from a ceramide deficiency. In a previous study our group reported a significant increase in skin ceramide levels in healthy subjects after treatment in vivo with a cream containing a preparation of Streptococcus thermophilus. The presence of high levels of neutral sphingomyelinase activity in this organism was responsible for the observed increase of stratum corneum ceramide levels, thus leading to an improvement in barrier function and maintenance of stratum corneum flexibility. The aim of the present work is to investigate the effects of the topical treatment of a Streptococcus thermophilus-containing cream on ceramide levels of stratum corneum of healthy elderly women. The ceramide levels, transepidermal water loss and capacitance were evaluated on stratum corneum sheets from the forearms of 20 healthy female subjects treated with a base cream or the same cream containing a sonicated preparation of the lactic acid bacterium Streptococcus thermophilus. A 2-week topical application of a sonicated Streptococcus thermophilus preparation led to significant and relevant increase of stratum corneum ceramide levels. Moreover, the hydration values of the treated forearm of each subject was significantly higher than control sites. These results suggest that the experimental cream was able to improve the lipid barrier and to increase a resistance against ageing-associated xerosis.  相似文献   

3.
The relationship between the permeability of solutes undergoing transport via the lipid pathway of the stratum corneum and the degree to which the same solutes partition into the stratum corneum has been explored by measuring the permeability coefficients and stratum corneum/water partition coefficients of a series of hydrocortisone esters varying in lipophilicity. Isolated human stratum corneum, used in both the permeability and the uptake experiments, was shown to resemble full-thickness skin in its overall resistance and selectivity to solute structure. As with full-thickness skin, delipidization destroys the barrier properties of isolated stratum corneum. Although a linear relationship is frequently assumed to exist between permeability coefficients and membrane/water partition coefficients, a log–log plot of permeability coefficients versus the intrinsic stratum corneum/water partition coefficients for the series of hydrocortisone esters studied is distinctly nonlinear. This nonlinearity arises from the fact that the transport of these solutes is rate limited by a lipid pathway in the stratum corneum, while uptake reflects both lipid and protein domains. From the relative permeability coefficients of 21-esters of hydrocortisone varying in acyl-chain structure, group contributions to the free energy of transfer of solute into the rate-limiting barrier microenvironment of the stratum corneum lipid pathway are calculated for a variety of functional groups including the –CH2–, –CONH2, –CON(CH3)2, -COOCH3, –COOH, and –OH groups. These are compared to contributions to the free energies of transfer obtained for the same functional groups in octanol/water, heptane/water, and stratum corneum/water partitioning experiments. The group contributions to transport for polar, hydrogen-bonding functional groups are similar to the values obtained from octanol/water partition coefficients. This similarity suggests that complete loss of hydrogen bonding does not occur in the transition state for passive diffusion via the lipid pathway.  相似文献   

4.
The importance of the stratum corneum and its barrier function for infants, especially for newborns, is clinically evident. Research regarding the maturation of the stratum corneum in neonates, i.e. when full barrier function is obtained, has produced varying results. Based on transepidermal water loss and percutaneous absorption studies, term infants seem to possess stratum corneum with adult barrier properties. Additionally, postnatal life is thought to accelerate stratum corneum maturation, so that even preterm infants have barrier function similar to term infants at 2-3 weeks of gestational age. However, a look at other parameters, such as skin thickness, skin pH and stratum corneum hydration, shows that neonatal skin is always adjusting to the extrauterine environment in contrast to the steady state of adult skin. This suggests that barrier stabilization may be dependent on achieving a balance between different parameters. However, it is still in question, which parameters, what balance and what timing. This paper provides an up-to-date overview on the neonatal skin barrier based on the review of current literature.  相似文献   

5.
Relationships between skin permeability and physicochemical properties of drugs were examined to establish a predictive method for the steady-state permeation rate of drugs through human skin. Human skin permeation properties fell into two categories: one in which the permeability coefficient is correlated to the partition coefficient, revealed with lipophilic drugs; and the other in which the permeability coefficients are almost constant, shown with hydrophilic drugs. The stratum corneum, the main barrier in skin, could be considered as a membrane with two parallel permeation pathways: lipid and pore pathways, and an equation for predicting the steady-state permeation rate of drugs was derived. The skin permeabilities of drugs for man were compared with those for hairless rat. The species difference in skin permeability found was suggested to be due to the difference in skin permeation pathways, since lipid content and water uptake of the stratum corneum varied between human and hairless rat skin.  相似文献   

6.
The application of electrical high voltage pulses has been shown to greatly enhance the transdermal transport of water-soluble compounds. The resistance of the skins most important barrier, the stratum corneum, drops within less than 1 μs by orders of magnitude. This effect is attributed to electroporation, a nonthermic phenomena known to occur in phospholipid double layers. The striking difference between the stratum corneum lipid layers and the usually investigated phospholipid systems is the phase transition temperature. While lipid layers used for electroporation experiments are in liquid crystal phase above the phase transition temperature, the stratum corneum lipids (phase transition at approximately 70 degrees C) form a rigid quasi-crystalline membrane at room temperature.After the electrical stimulus a recovery of the passive flux was found making high voltage pulsing a suitable tool for controlling transdermal drug delivery. By ordinary light microscopy no dramatic changes in skin structure were found supporting the thesis of electroporation. However the microstructure shows clearly persistent structural changes. Recently the involvement of Joule heating due to the electric stimulus was shown as an important factor for skin permeabilization and molecular transport.  相似文献   

7.
Measurement of the water content of stratum corneum plays an important role in physiological and therapeutic inquiries in dermatology. There are many techniques available for non-invasive determination of skin hydration such as measurement of electrical, mechanical, thermal and spectroscopic properties of the skin. Most techniques, however, suffer from the fact that they do not employ a direct measurement of water content rather a property caused by skin hydration. Recently, Potts et al., (Arch. Derm. Res. 277, 489-495, 1985) developed an FT-IR method for the determination of water content of the skin both in vitro and in vivo. The method employed attenuated total reflectance infrared (ATR-IR) to measure a weak O-H stretch formed by the presence of water at 2100 cm-1. This absorbance is distant from interferences due to skin and most topically applied substances and therefore may be used in the quantitation of skin water content (hydration). This report describes the use of this technique in an investigation into the effect of occlusion on the water content of the skin. Method development and validation employing an in vitro system is also discussed.  相似文献   

8.
Transfersomes (Idea AG) are a form of elastic or deformable vesicle, which were first introduced in the early 1990s. Elasticity is generated by incorporation of an edge activator in the lipid bilayer structure. The original composition of these vesicles was soya phosphatidyl choline incorporating sodium cholate and a small concentration of ethanol. Transfersomes are applied in a non-occluded method to the skin and have been shown to permeate through the stratum corneum lipid lamellar regions as a result of the hydration or osmotic force in the skin. They have been used as drug carriers for a range of small molecules, peptides, proteins and vaccines, both in vitro and in vivo. It has been claimed by Idea AG that intact Transfersomes penetrate through the stratum corneum and the underlying viable skin into the blood circulation. However, this has not been substantiated by other research groups who have extensively probed the mechanism of penetration and interaction of elastic vesicles in the skin. Structural changes in the stratum corneum have been identified, and intact elastic vesicles visualised within the stratum corneum lipid lamellar regions, but no intact vesicles have been ascertained in the viable tissues. Using the principle of incorporating an edge-activator agent into a bilayer structure, a number of other elastic vesicle compositions have been evaluated. This review describes the research into the development and evaluation of Transfersomes and elastic vesicles as topical and transdermal delivery systems.  相似文献   

9.
In order to achieve enhanced topical drug delivery, it is necessary to make physical or biomolecular structural alterations to the stratum corneum by suitable techniques or by the use of specific chemical agents or drug carriers. The role of the chemical penetration enhancer is to reversibly alter the barrier properties of the stratum corneum by disruption of the membrane structures or by maximizing drug solubility within the skin. Alternatively, permeant delivery to the dermal vasculature using one of several physical methods to reduce diffusional resistance within the skin may be used to promote drug penetration. In the present article, we summarize the major facets of the diverse spectrum of penetration enhancement techniques that include modification of the stratum corneum, lipid-based delivery systems, drug/vehicle interactions, bypassing the stratum corneum, and electrical techniques of enhancement.  相似文献   

10.
The study described in this paper constitutes a practical assay system to evaluate in vivo drug penetration using two complementary non-invasive methods. An electrical capacitance test was first applied to the skin on the forearm to evaluate the hydration of the skin, and check the integrity of the stratum corneum. In the first step, the percentage absorption was measured using an occlusive and difference method; following benzophenone-3 application any residual formulation was washed off and the amount removed analyzed. In the second step, the tape stripping method-a useful procedure for selectively removing the skin's outermost layer, the stratum corneum, and measuring the stratum corneum adsorption-was performed. Under these conditions the human skin permeation of this UV-filter over four hours was near to 35% of the applied dose with the occlusive method. The amount of topically applied benzophenone-3 found in the stratum corneum after 30 min exposure using the stripping procedure was evaluated at 4% to the applied dose.  相似文献   

11.
Abstract In this study, we utilize in vivo human skin and a viable ex-vivo human skin model to investigate the effect of a commercial depilatory agent on barrier function. Tape stripping was used as a positive control. The magnitude of skin barrier was quantified by measuring transepidermal water loss values on in vivo human skin and transepithelial electrical resistance measurements and tissue histology on ex vivo skin. The susceptibility to carboxylated quantum dot penetration through ex vivo skin was investigated using fluorescent microcopy analysis of microtomed skin sections and flow cytometry to quantify quantum dot association with live epidermal cells. Results show that depilatory treatment modifies the outside-in barrier sufficiently to allow quantum dots to penetrate the stratum corneum but to a lesser extent than tape stripping. The implications of these finding are discussed.  相似文献   

12.
To develop formulations for transdermal drug delivery, this study tested the hypothesis that the anionic surfactant, N-lauroylsarcosine (NLS), and ethanol synergistically increase skin permeability by increasing the fluidity of stratum corneum lipid structure. Skin permeability experiments showed that transdermal delivery of fluorescein across human cadaver epidermis was increased by up to 47-fold using formulations containing NLS in aqueous ethanol solutions. Skin permeability was increased by increasing NLS concentration in combination with 25-50% ethanol solutions. Skin permeability was shown to correlate with skin electrical conductivity measurements, changes in differential scanning calorimetry lipid transition peak temperature, and Fourier transform infrared spectroscopy CH stretching peak shifts indicative of stratum corneum lipid fluidization and changes in protein conformation. Evidence for lipid extraction was also evident, but did not appear to be responsible for the observed increases in skin permeability. We conclude that NLS in aqueous ethanol formulations can dramatically increase skin permeability by a mechanism involving synergistic lipid-fluidization activity in the stratum corneum.  相似文献   

13.
The lipids of the stratum corneum are considered responsible for the most important functions of the skin, such as the transepidermal water loss, as well as the transdermal penetration of the chemical substances. Topical application of lipids similar to the physiological stratum corneum (SC) on barrier disrupted skin, could enhance the recovery rate of the skin barrier. A mixture of natural lipids or liposomes with the same lipid composition, were applied and their pharmacological action was investigated. The tests were done in vivo, on the back of hairless mice. Comparative results were obtained and showed that the liposomes had a higher turnover of the skin barrier in contrast to that of the mechanical mixture of lipids.  相似文献   

14.
The effect of age on intact and stripped skin permeability of lipophilic (ketoprofen and isosorbide dinitrate) and hydrophilic permeants (deuterium oxide and diclofenac sodium) was investigated using STD: Wistar male rats aged 5 to 180 days. The permeability of permeants through intact skin increased with increasing lipophilicity of the permeants at each age, indicating that the permselective property of rat skin is revealed even at 5-days-old. The permeability coefficients through intact skin decreased with increasing age, and the extent of these decreases was higher for lipophilic permeants than that for hydrophilic permeants. On the other hand, the stripped skin permeability of permeants was almost the same at each age, and with aging each permeability coefficient through stripped skin decreased up to 21 days, dramatically during 21-90 days and then gradually again to 180 days. The thickness of the stratum corneum and stripped skin increased according to age with faster growth during 21-90 days. The reciprocal of the mean thickness of stratum corneum and stripped skin correlated well with intact skin and stripped skin permeability (r > 0.9), respectively. These results clarified that the permselectivity of rat skin against lipophilicity of permeant exists at the latest from 5 days after birth. In addition, it is speculated that the thickness of skin is a large factor in the decrease of its permeability with age.  相似文献   

15.
Mechanism of skin penetration-enhancing effect by laurocapram.   总被引:6,自引:0,他引:6  
In order to clarify the mechanism of action of laurocapram (Azone) on the skin permeation of drugs, the following experiments were done. First, the effect of Azone on the skin components was compared with that of other penetration enhancers. Azone markedly fluidized liposomal lipids (as a model lipid system) compared with other enhancers. Ethanol extracted large amounts of the stratum corneum lipids, whereas Azone did not. These results suggest that the effect of Azone on the lipids in the stratum corneum is not the same as that of ethanol. In addition, ethanol increased the amount of free sulfhydryl (SH) group of keratin in the stratum corneum, whereas Azone did not directly affect the stratum corneum protein. Azone increased water content in the stratum corneum, as measured by skin conductance. This effect might be a reason for the action of Azone. For further understanding, the enhancing effects of Azone on the skin permeation of several model compounds (alcohols, sugars, and inorganic ions) were compared with the effects of pretreatment with distilled water, which was thought to increase water-holding capacity, and pretreatment with ethanol, which was thought to affect the lipids and protein in the skin barrier (i.e., stratum corneum). Pretreatment with water or ethanol enhanced skin permeation of hydrophilic compounds, whereas they decreased that of octanol, a hydrophobic compound. The tendency of Azone to increase or decrease the skin permeation rate of most compounds was similar to that of pretreatment with water or ethanol. However, the effect of Azone on the skin permeation of inorganic ions was relatively low, whereas that of pretreatment with water or ethanol was high.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Skin surface has an acidic pH, whereas the body's internal environment maintains a near-neutral pH. The physiological role of the 'acidic mantle' and the function of the pH gradient throughout the stratum corneum remain unexplained. The pH gradient has been suggested to activate enzymes responsible for the maintenance of the skin barrier function and to facilitate the desquamation process in the stratum corneum. The aim of the study was to investigate the influence of pH of a moisturizing cream on barrier recovery in surfactant-damaged human skin. Volunteers had their skin damaged with sodium lauryl sulphate and treated those areas with the cream, adjusted to either pH 4.0 or 7.5. The study did not prove the superiority of a cream of pH 4.0 to a cream of pH 7.5 regarding promotion of skin barrier recovery, since no significant differences (p > 0.05) were found in transepidermal water loss, blood flow and skin capacitance between the treated areas.  相似文献   

17.
Transfersomes® (Idea AG) are a form of elastic or deformable vesicle, which were first introduced in the early 1990s. Elasticity is generated by incorporation of an edge activator in the lipid bilayer structure. The original composition of these vesicles was soya phosphatidyl choline incorporating sodium cholate and a small concentration of ethanol. Transfersomes are applied in a non-occluded method to the skin and have been shown to permeate through the stratum corneum lipid lamellar regions as a result of the hydration or osmotic force in the skin. They have been used as drug carriers for a range of small molecules, peptides, proteins and vaccines, both in vitro and in vivo. It has been claimed by Idea AG that intact Transfersomes penetrate through the stratum corneum and the underlying viable skin into the blood circulation. However, this has not been substantiated by other research groups who have extensively probed the mechanism of penetration and interaction of elastic vesicles in the skin. Structural changes in the stratum corneum have been identified, and intact elastic vesicles visualised within the stratum corneum lipid lamellar regions, but no intact vesicles have been ascertained in the viable tissues. Using the principle of incorporating an edge-activator agent into a bilayer structure, a number of other elastic vesicle compositions have been evaluated. This review describes the research into the development and evaluation of Transfersomes and elastic vesicles as topical and transdermal delivery systems.  相似文献   

18.
Binding of primaquine to epidermal membranes and keratin   总被引:2,自引:0,他引:2  
The localisation of primaquine was studied within epidermal membranes following the application of a topical dose. A depth profile was constructed by tape-stripping human epidermis following permeation of a 70 mgml(-1) solution of primaquine in Miglyol 840. Comparative binding studies of primaquine were carried out on isolated human stratum corneum and whole epidermis, using normal and delipidised tissue. An additional study was undertaken using bovine keratin powder as a model of human keratin. The depth profile showed that primaquine decreased with depth and decreasing keratin content, and the total primaquine recovered (15.5 mgcm(-2)) was 300 x the amount of extractable lipid. Binding to delipidised skin was saturable, whereas binding to normal skin was unsaturable, reflecting the high miscibility of drug in the lipid domains as opposed to a finite, but large number of binding sites on the corneocytes. Binding was greater for stratum corneum than stratum corneum plus viable epidermis, probably due to greater accessibility of corneocytes keratin. Binding was dose dependent, although binding to delipidised skin was far greater than to normal skin, demonstrating that primaquine had an affinity for lipoidal regions and an even higher affinity for the proteinaceous domains of the stratum corneum. This was supported by high saturable levels of primaquine binding to bovine horn keratin. The results indicated extensive binding to corneocyte keratin has a significant effect on reservoir formation and the permeability of primaquine across human skin. It is speculated that the large amount of keratin presented at the skin surface may be an evolutionary protective process for the sequestration of ingressing molecules.  相似文献   

19.
The uptake of a series of hydrocortisone esters varying in lipophilicity from water into untreated and delipidized human stratum corneum has been determined. The partition coefficients of solutes into fully hydrated stratum corneum are postulated to represent the separate contributions of three structurally distinct domains—the extractable lipids, protein, and the solvent domain. The solvent domain was assumed to have the properties of bulk water. The relative affinities of the protein and lipid domains of stratum corneum for solutes varying in structure were determined by comparing solute uptake in untreated and delipidized stratum corneum. Partitioning into the extracted lipids was also examined. Solute uptake into stratum corneum may be governed by the protein domain, the lipid domain, or a combination of the two, depending on solute lipophilicity. Due to differences in the selectivity of the two domains, a change in uptake mechanism occurs with increasing solute lipophilicity from protein-dominated uptake for hydrophilic solutes to lipid domain-dominated uptake for lipophilic solutes. The stratum corneum lipid content, which varies dramatically from individual to individual (3–46% in this study), is an important determinant of the affinity of the stratum corneum for highly lipophilic solutes but has no effect on the uptake of hydrophilic solutes.Prakash V. Raykar: In partial fulfillment of the Ph.D. degree of pharmaceutics, College of Pharmacy, University of Utah.  相似文献   

20.
Due to the lower risk of systemic side effects topical treatment of skin disease appears favourable, yet the stratum corneum counteracts the penetration of xenobiotics into viable skin. Particulate carrier systems may mean an option to improve dermal penetration. Since epidermal lipids are found in high amounts within the penetration barrier, lipid carriers attaching themselves to the skin surface and allowing lipid exchange between the outermost layers of the stratum corneum and the carrier appear promising. Besides liposomes, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been studied intensively. Here we describe the potential of these carrier systems and compare the dermal uptake from SLN and NLC to the one of alternative vehicle systems. A special focus is upon the interactions of active ingredients and the lipid matrix as well as the quantification of dermal penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号