首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500‐m river reaches was sampled repeatedly with several techniques (boat‐mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non‐native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non‐native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species‐specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Nonwadeable rivers are unique ecosystems that support high levels of aquatic biodiversity, yet they have been greatly altered by human activities. Although riverine fish assemblages have been studied in the past, we still have an incomplete understanding of how fish assemblages respond to both natural and anthropogenic influences in large rivers. The purpose of this study was to evaluate associations between fish assemblage structure and reach‐scale habitat, dam, and watershed land use characteristics. In the summers of 2011 and 2012, comprehensive fish and environmental data were collected from 33 reaches in the Iowa and Cedar rivers of eastern‐central Iowa. Canonical correspondence analysis (CCA) was used to evaluate environmental relationships with species relative abundance, functional trait abundance (e.g. catch rate of tolerant species), and functional trait composition (e.g. percentage of tolerant species). On the basis of partial CCAs, reach‐scale habitat, dam characteristics, and watershed land use features explained 25.0–81.1%, 6.2–25.1%, and 5.8–47.2% of fish assemblage variation, respectively. Although reach‐scale, dam, and land use factors contributed to overall assemblage structure, the majority of fish assemblage variation was constrained by reach‐scale habitat factors. Specifically, mean annual discharge was consistently selected in nine of the 11 CCA models and accounted for the majority of explained fish assemblage variance by reach‐scale habitat. This study provides important insight on the influence of anthropogenic disturbances across multiple spatial scales on fish assemblages in large river systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The Clean Water Act of 1972 is credited with improving water quality across the USA, although few long‐term studies tracking hydrologic, chemical, and biological responses to cleanup efforts exist. The Trinity River of Texas was plagued by poor water quality for more than a century before passage of legislation to reduce point source pollution from the Dallas–Fort Worth (DFW) Metroplex. We tracked changes in components of flow regime; concentrations of ammonia, nitrate, phosphorus, and biochemical oxygen demand (BOD); and fish assemblage composition in three mainstem reaches during a 40‐year period (1968–2008) following implementation of a large‐scale cleanup initiative. Results suggest little change in flow regime components such as magnitude, timing, and rate of change among the three reaches during 1968–2008. Concentrations of water quality parameters declined through time and with greater distance from DFW, including the lowest concentrations in the reach downstream of a mainstem reservoir (Lake Livingston). Fish assemblage composition shifts correlated with attenuated nutrient and BOD concentrations, and species richness generally increased among all reaches. Native and intolerant fishes consistently increased through time among all three reaches, although lentic and non‐native species also increased downstream of Lake Livingston. Our findings suggest a revitalization of the Trinity River fish assemblage associated with reduced nutrient pollution in DFW (even among distant reaches) and also illustrate potential confounding factors such as stream impoundment and continued nutrient deposition that likely preclude complete recovery. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In order to evaluate the environmental condition of the Barra Bonita Reservoir, we adapted the Index of Biotic Integrity (IBI). We chose 24 sampling sites in which three types of habitats were sampled: the mouths of tributaries, the central reservoir and the lateral reservoir. Fish were caught in two seasons (dry and rainy) using 10 gillnet gangs, with meshes ranging from 3 to 12 cm between opposite knots, and funnel traps. Abiotic and biotic variables were measured. Due to the artificial nature of the reservoir, the term biotic integrity was considered inappropriate and the term RFAI (Reservoir Fish Assemblage Index) was adopted. Twelve metrics from sixteen possibles were selected using the Pearson correlation coefficient. The reference conditions were set up based on the criteria of the best condition observed. For each metric, a score of 1, 3 or 5 was assigned as it strongly departs (1), slightly departs (3) or approaches (5) the reference condition. The index value is the sum of the metrics partial scores and ranges from 12 to 60. To evaluate the importance of the unit of measurement of the metric, the index was calculated in fish number (RFAIN) and in weight (RFAIW). The correlation between RFAIN and RFAIW was very high ( r = 0.90, n = 46) indicating that the unit of measurement does not influence the final result of the index. Most of the sampling sites were classified in the ‘reasonable’ RFAI category. Only the central sites were classified as ‘poor’. To validate the RFAI, another index, the Habitat Quality Index (HQI), was built starting from the physiochemical and habitat variables collected. The correlation of the RFAI with the HQI was highly significant (RFAIN, r = 0.37; RFAIW, r = 0.47; n = 46), indicating that they respond in the same way to environmental degradation. The HQI metrics which most affect RFAI were depth, surrounding landscape and macrophyte presence/absence. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Diversity and community structure of fishes were studied in three neighbouring tributaries of the Mekong River in Thailand, namely the Mun, Songkhram and Gam Rivers. The rivers are located in the same ecoregion but have contrasting levels of both hydrological regulations and mitigation measures; the Mun River has a hydropower dam with a fish ladder and sluice gates that are opened during the wet season each year, the Gam River has several irrigation dams with a fish ladder at each dam site, and the Songkhram River has no dams along its river course. A total of 124 freshwater fish species were sampled in these rivers from August 2009 to June 2010. Overall species richness was highest in the Songkhram River (112), followed by the Mun (97) and Gam (54) Rivers. Average per site species richness was also significantly different among rivers but not among sampling months. Abundance–biomass comparison plots revealed considerably overlapping distributions of these two metrics from the dry to early rainy seasons in the Songkhram River and, to a lesser extent, in the Mun River. Fish assemblage data were classified into six clusters with similar community structure. Fish assemblages in the Gam River constituted a single cluster, while those in the other two rivers formed multiple clusters depending on the sampling season. The results of the cluster analysis are discussed in relation to the dominance of the three migration guilds (white, black, and grey fishes) of the Mekong River fishes. The effectiveness of the mitigation measures was determined to be limited in alleviating adverse impacts of dams in these tributaries of the Mekong River. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Fish assemblages in large rivers are governed by spatio‐temporal changes in habitat conditions, which must be accounted for when designing effective monitoring programmes. Using boat electrofishing surveys, this study contrasts species richness, catch per unit effort (CPUE), total biomass, and spatial distribution of fish species in the Saint John River, New Brunswick, Canada, sampled during different diel periods (day and night) and macrohabitats (hydropower regulated river and its reservoir) in the vicinity of the Mactaquac (hydropower) Generating Station. Taxa richness, total CPUE, and total biomass were significantly higher during night surveys, resulting in marked differences in community composition between the two diel periods. Furthermore, the magnitude of diel differences in catch rate was more pronounced in lentic than in lotic macrohabitats. The required sampling effort (i.e., number of sites) to increase accuracy and precision of CPUE estimates varied widely between fish species, diel periods, and macrohabitats and ranged from 15 to 185 electrofishing sites. Determining a correction factor to contrast accuracy and precision of day‐ with night‐time surveys provide useful insights to improve the design of long‐term monitoring programmes for fish communities in large rivers. The study also shows the importance of multihabitat surveys to detect differences in the magnitude of diel changes in fish community metrics.  相似文献   

7.
1998-2001年长江口近海鱼类群聚结构及其与环境因子的关系   总被引:2,自引:0,他引:2  
根据1998-2001年长江口近海4个航次鱼类拖网调查数据,运用群落生态学分类和排序方法,分析了长江口近海鱼类群聚结构特征及其与环境因子的关系。筛选后的64个站次的48种长江口近海鱼类分属10目28科,鲈形目种类最多,灯笼鱼目,鲈形目和鲱形目鱼类丰度共占总丰度的 99.81% 。龙头鱼、七星底灯鱼和黄鲫为秋季优势种,银鲳和皮氏叫姑鱼为春季优势种。相同季节年度间的鱼类群聚差异不显著,春季(5月)和秋季(11月)鱼类群聚有明显的季节分化。CCA分析显示:1998-2001年长江口近海鱼类群聚的主要影响因素是水深、底层温度、底层溶解氧、表层总磷和pH值。  相似文献   

8.
The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species‐by‐species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community‐level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community‐level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non‐native salmonids on river‐dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This study was undertaken as part of a long‐term investigation of the ability of high‐level fishways to rehabilitate fish communities upstream of high dams. Effects of Tallowa Dam on fish of the Shoalhaven River system were studied by comparing species abundances, population size‐structures and the structure of fish communities above and below the dam. Fish were sampled twice yearly for two years at 12 sites throughout the catchment. Species richness was greater downstream of the dam, with 21 species, compared to 16 species upstream of the dam. Ten diadromous species are believed to be extinct above the dam because of obstructed fish passage. Another four migratory species capable of climbing the wall have reduced abundances upstream. Accumulations of fish, particularly juveniles, directly below the dam were evident for nine species. Fish communities upstream and downstream of the dam differed significantly, identifying the dam as a significant discontinuity in the available fish habitats within the system. Historical evidence suggests that before the dam was built, fish communities from the tidal limit to at least 130 m elevation were largely continuous. This study has demonstrated that Tallowa Dam is a major barrier to fish migration and has had adverse effects on the biodiversity of the system. The creation of Lake Yarrunga by Tallowa Dam has resulted in distinctive fish communities in riverine and lacustrine habitats. Populations of five species that occur both upstream and downstream of the dam have developed differences in their size structures. The fish community downstream of the dam also differs from its historical condition because of the virtual disappearance of Australian grayling (Prototroctes maraena) and the establishment of non‐native species. A high‐level fishway is now being designed for the dam to restore fish passage. Data from this study will serve as a baseline against which to assess the effectiveness of the fishway in rehabilitating fish communities of the river system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Hydrological regime, physical habitat structure and water chemistry are interacting drivers of fish assemblage structure in floodplain rivers throughout the world. In rivers with altered flow regimes, understanding fish assemblage responses to flow and physico‐chemical conditions is important in setting priorities for environmental flow allocations and other river management strategies. To this end we examined fish assemblage patterns across a simple gradient of flow regulation in the upper Murray–Darling Basin, Australia. We found clear separation of three fish assemblage groups that were spatially differentiated in November 2002, at the end of the winter dry season. Fish assemblage patterns were concordant with differences in water chemistry, but not with the geomorphological attributes of channel and floodplain waterholes. After the summer‐flow period, when all in‐channel river sites received flow, some floodplain sites were lost to drying and one increased in volume, fish assemblages were less clearly differentiated. The fish assemblages of river sites did not increase in richness or abundance in response to channel flow and the associated potential for increased fish recruitment and movement associated with flow connectivity. Instead, the more regulated river's fish assemblages appeared to be under stress, most likely from historical flow regulation. These findings have clear implications for the management of hydrological regimes and the provision of environmental flows in regulated rivers of the upper Murray–Darling Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Understanding the ecological function of developed large rivers remains elusive because these systems have long been altered for multiple uses. In particular, floodplains of large rivers, such as the Mississippi River, have been contained behind extensive levees. A historic flood occurred in the lower Mississippi River system during spring of 2011, prompting the US Army Corps of Engineers to activate the Bird's Point‐New Madrid floodway, a 55 000‐ha, agriculturally dominated, leveed area. Water entered the floodway at flows >1 m s?1 through two crevasses created in the upper portion of the levee and exited through a crevasse at the lower end. During the month, the floodway was inundated; we quantified discharge, water chemistry, primary production and fish production in the floodway and the adjacent river. Water entering the floodway was retained <1.3 d, and nutrient concentrations were not elevated in the floodway beyond those in the river, despite expected contributions from a legacy of fertilization. Primary production equaled respiration in the floodway, while the adjacent river was heterotrophic. Gizzard shad and freshwater drum were more abundant in the floodway than the river, while channel catfish were more abundant in the river. Growth rates of young native fishes, normalized for temperature, were the same in the floodway and the river, with the exception of gizzard shad, which grew faster in the floodway. Fish community structure, especially in the lower floodway, was temporally and spatially dynamic. Even though it has been heavily modified for agriculture, the floodway provided benefits, albeit limited, to the Mississippi River. With multifunctional management and strategic planning, systems such as these may provide substantial services such as flood abatement, nutrient transformation and fish production in the Mississippi River basin and potentially reduce nutrient loading downstream in areas such as the Gulf of Mexico. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This study focused on characterizing the endemic fish assemblages in the upper Yangtze River Basin and identifying the relative influences of catchment land‐cover variables on observed fish patterns in order to suggest a conservation strategy. A model based on a self‐organizing map was applied to determine endemic fish assemblages along the river network, based on presence/absence data for 124 endemic species. Five fish assemblages (Ia, Ib, IIa, IIb1, IIb2) were described. These assemblages varied significantly in terms of individual species patterns as well as species richness. Indicator species were identified for each class of community (0, 3, 9, 27, 0 species for cluster Ia, Ib, IIa, IIb1, IIb2, respectively). Structure of the endemic fish assemblages in the upper Yangtze River was highly correlated with local topographic and geomorphic characteristics. Simultaneously, the catchment land cover features also reflected out this endemic fish distribution structure. Among 18 land‐cover types, alpine and sub‐alpine meadow, together with farmland, were revealed to be the most important factors both in discriminating the endemic fish assemblages and in correlating species distributions by using discriminant analysis and co‐inertia analysis. Finally, in order to preserve the rare and endemic fish in the upper Yangtze River, reserve networks, rather than a single national nature reserve, should be established. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The natural flow regime of many rivers in the USA has been impacted by anthropogenic structures. This loss of connectivity plays a role in shaping river ecosystems by altering physical habitat characteristics and shaping fish assemblages. Although the impacts of large dams on river systems are well documented, studies on the effects of low‐head dams using a functional guild approach have been fewer. We assessed river habitat quality and fish community structure at 12 sites on two rivers; the study sites included two sites below each dam, two sites in the pool above each dam and two sites upstream of the pool extent. Fish communities were sampled from 2012 to 2015 using a multi‐gear approach in spring and fall seasons. We aggregated fishes into habitat and reproductive guilds in order to ascertain dams' effects on groups of fishes that respond similarly to environmental variation. We found that habitat quality was significantly poorer in the artificial pools created above the dams than all other sampling sites. Fast riffle specialist taxa were most abundant in high‐quality riffle habitats farthest from the dams, while fast generalists and pelagophils were largely restricted to areas below the downstream‐most impoundment. Overall, these dams play a substantial role in shaping habitat, which impacts fish community composition on a functional level. Utilizing this functional approach enables us to mechanistically link the effects of impoundments to the structure of fish communities and form generalizations that can be applied to other systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The St. John's Bayou water control structure near New Madrid, MO, connects the main Mississippi River to two large backwater areas called the New Madrid Floodway and St. John's Bayou. While this area has been altered, the New Madrid Floodway and St. John's Bayou account for the only substantial portion of the historic Mississippi River floodplain that remains and provides the only critical connection between backwater/floodplain habitat and the river. Fish passage was evaluated during April–December 2010 using ultrasonic telemetry. Stationary receivers were placed strategically at five locations above and below the structure in St. John's Bayou, in the floodway and the outlet to the Mississippi River. A total of 100 individuals representing 14 species were tagged. Total number of detections during an 8‐month period was 1 264 717. Fifteen individuals representing five species moved into the Mississippi and Ohio rivers; seven individuals returned to St. John's Bayou. Thirteen of the 14 species moved upstream through the structure. Of the 85 individuals that stayed in the bayou, 29 fish passed through the structure for a total of 92 passage events. The downstream : upstream passage was roughly 50:50. Passage was correlated with river rise, with frequency of passage being higher in spring, but passage occurred each month during the study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Dam removal is an increasingly common restoration technique in lotic ecosystems. Potential dam removal benefits include improved aquatic organism passage, restoration of natural flow dynamics and a general improvement in habitat for native species. However, understanding potential dam removal outcomes requires data on ecosystem response in a wide variety of settings. We evaluated fish and benthic macroinvertebrate response to removal of the Spruce Pine dam in western North Carolina, USA. This dam was partially breached prior to removal, and impounded a coolwater river, both scenarios under which dam removal has been under‐studied. Post‐removal shifts in fish and benthic macroinvertebrate assemblages did not occur, suggesting that previously documented patterns of assemblage change in response to dam removal, particularly in the area upstream from the dam, are not universal, and may depend upon factors such as river gradient and water temperature, and the available species pool. Such information can aid managers in identifying conditions under which an expectation of significant instream habitat improvement in response to dam removal may not be warranted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The interaction between drought and river regulation is monitored to better understand river flow mixing, evaporation and surface‐groundwater exchange in changing regional climates and in increasingly regulated waterways. This study compared Brazos River stable isotope (δ18O and δD) and electrical conductivity values with reservoir, creek and aquifer samples in the Brazos watershed, the largest watershed in Texas. The combination of tributaries, rainfall and the Brazos River Alluvium Aquifer, on the one hand, and the Lake Whitney reservoir, on the other hand, represent endmembers of dilute run‐off water and evaporated saline water, respectively. A simple isotope mixing model that uses monthly river discharge, Lake Whitney discharge, historical monthly precipitation δ18O and pan evaporation accurately reconstructs river δ18O (±0.5‰ on average). Data and isotope balance modelling support continued evaporation of 18O‐enriched Lake Whitney water as it flows downstream, although the most evaporation took place in Lake Whitney. The difference between river and precipitation δ18O, or Δ18ORIVPPT, here a measurement of degree of evaporation, ranged from ?0.1‰ for a small creek, to 1.7‰ for the Brazos River, to at least 2.7‰ in Lake Whitney. This study indicates that drought in regulated rivers may enhance reservoir discharge dominance in river flows during peak drought conditions when combined run‐off and baseflow dominance would be expected in a similar undammed river. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Various designs of low‐head dams are used to rehabilitate streams or forestall upstream channel incision after channelization. We report on the efficacy of using notched sills and grade control structures (GCS) to restore the fish assemblage in Luxapallila Creek, Mississippi. We tested the null hypotheses that habitat variables and species richness, evenness, and assemblage structure would not differ among: (1) a channelized segment with no modifications; (2) a channelized segment mitigated by the installation of sills and GCS; (3) a segment upstream of the installations and undergoing channel incision; and (4) an unaltered segment. Although habitat variables changed, neither species richness, evenness, nor fish assemblage structure differed between mitigated and channelized segments with both exhibiting less richness and different assemblage structures than the unaltered segment. Lack of differences in species richness between the incised and unaltered segments suggest that the GCS may have halted the negative effects of upstream channel incision before species were extirpated. Conspicuous habitat differences between the altered (channelized and mitigated) and unaltered segments were lack of backwaters and canopy coverage and finer substrates in the altered segments. Our results suggest a more comprehensive rehabilitation strategy is required in Luxapallila Creek. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

18.
Over recent years, there has been increasing challenge to the accepted wisdom that the environmental impacts of river engineering can be adequately mitigated through the installation of infrastructure, such as fish passes. This has led to a debate on the value of fish passage with some arguing that increased research and development will advance solutions for a variety of structures that are suitable for multiple species and transferable to different regions. Others suggest that policies and management strategies should reflect the realization that current mitigation technology frequently fails and can itself have negative impacts. Meta‐analyses of the results of studies on fish passage effectiveness have led to the challenge of conventional views by highlighting lower than expected efficiencies, wide variation between and within fish pass designs, and bias towards consideration of a limited number of commercially important species mainly from northern temperate regions. Results of meta‐analyses can also be controversial, and difficulties can arise when nuances associated with individual studies are lost and when metrics used are not standardized. Intrinsic variation in fish passage efficiency between and within species due to differences in patterns of movement and motivation may not be considered, and in many situations, current metrics are not appropriate. Quantification of variation in trends in fish passage efficiency over time and with spatial scale is lacking and should be the focus of future reviews. It is time to accept that fish passage does not provide a universally effective mitigation solution, particularly when designs and strategies are transferred to other regions and species for which they were not originally designed. Admitting to cases of failure is an essential first step to advancing water resources planning and regulation based on well‐informed decision‐making processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
2012年夏季,长江科学院组织了江源科学考察团,对长江源和澜沧江源区的水体浮游植物进行了系统的采样调查,本次调查共鉴定出浮游植物29种,其中硅藻门17种,占种类数的54.83%,其次是绿藻门,共检测出7种,占种类数的24.14%;蓝藻门3种,隐藻门1种,甲藻门1种。各个采样位点的浮游植物密度均相对较低(密度范围为(9.14~13.60)×104 个/L)。本次调查的长江源和澜沧江源区水体浮游植物的种类和密度没有明显差别,研究结果与2010年长江水利委员会组织的江源科学考察结果相接近。研究结果显示,目前江源地区水生态环境整体状况良好,继续深入开展江源地区生态环境状况研究对于江源区的生态环境保护与修复具有十分重要的意义。  相似文献   

20.
The Guadiamar River (SW Iberian Peninsula) received a major toxic spill (6 hm3) from a tailing pond in 1998 that defaunated 67 km of the main stem. Following early mud removal works, the fish assemblage was annually monitored at four affected sampling sites and one located in the upstream non‐affected reach of the Guadiamar River as reference. Fish abundance and assemblage structure were analysed. Principal response curve was applied to assess the recovery trends and to identify the most influential species. A non‐metric multidimensional scaling ordination and permutational multivariate analysis of variance were applied to evaluate changes in fish assemblage structure between sites and years. Overall, the affected reaches harboured fish within 2 years of the spill. Colonists arrived mainly from the upstream and downstream non‐affected Guadiamar River reaches and, to a lesser extent, from three lateral tributaries. It is likely that the proximity, connectivity and environmental conditions of non‐affected fish sources greatly influenced the recolonization process in each site. The structure of the fish community in the affected sites was initially similar to that in the unaffected reference stretch but changed dramatically with time, and each site followed its own trajectory. Currently, long‐term threats such as mining leachates, urban sewage, agricultural pollution and exotic fish species expansion have probably exceeded the initial spill effect. This highlights the large effect of anthropogenic factors on freshwater ecosystem resilience, and the need to significantly reduce both pollution and exotic species if the affected reach of the Guadiamar River is to recover fully. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号