首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文合成了Amberlite XAD-4键合4-(2-吡啶偶氮)-间苯二酚螯合树脂,并考察了其对痕量镉(Ⅱ)的吸附性能。探讨了溶液pH、洗脱剂和干扰离子等对镉(Ⅱ)分离富集的影响。树脂吸附容量为4.7mg/g,吸附的镉(Ⅱ)用5mL 2mol/L HNO3乙醇溶液洗脱,火焰原子吸收法测定。在最佳实验条件下,回收率为94.4%~97.9%,相对标准偏差在1.7%~2.7%之间。方法可用于蔬菜中镉(Ⅱ)的测定。  相似文献   

2.
《Analytical letters》2012,45(3):623-631
ABSTRACT

A chromatographic method has been established for the determination of trace amounts of cobalt by preconcentration on Amberlite XAD-16 resin as cobalt/4-(2-Thiazolylazo) resorcinol (TAR) complexes. The conditions (e.g. pH, resin amounts, matrix ions) affecting the recovery of cobalt from aqueous solution were studied. The method has been employed for the determination of cobalt in natural water samples.  相似文献   

3.
In the present paper, a solid phase extraction system for separation and preconcentration of nickel (ng g−1) in saline matrices is proposed. It is based on the adsorption of nickel(II) ions onto an Amberlite XAD-2 resin loaded with 1-(2-pyridylazo)-2-naphthol (PAN) reagent. Parameters such as the pH effect on the nickel extraction, the effect of flow rate and sample volume on the extraction, the sorption capacity of the loaded resin, the nickel desorption from the resin and the analytical characteristics of the procedure were studied. The results demonstrate that nickel(II) ions, in the concentration range 0.10–275 μg l−1, and pH 6.0–11.5, contained in a sample volume of 25–250 ml, can be extracted by using 1 g Amberlite XAD-2 resin loaded with PAN reagent. The adsorbed nickel was eluted from the resin by using 5 ml 1 M hydrochloric acid solution. The extractor system has a sorption capacity of 1.87 μmol nickel per g of Amberlite XAD-2 resin loaded with PAN. The precision of the method, evaluated as the R.S.D. obtained after analyzing a series of seven replicates, was 3.9% for nickel in a concentration of 0.20 μg ml−1. The proposed procedure was used for nickel determination in alkaline salts of analytical grade and table salt, using an inductively coupled plasma atomic emission spectroscopy technique (ICP-AES). The standard addition technique was used and the recoveries obtained revealed that the proposed procedure shows good accuracy.  相似文献   

4.
A new chelating resin was prepared by coupling Amberlite XAD-2 with Brilliant Green through an azo spacer. The resulting resin has been characterized by FTIR spectrometry, elemental analysis, and thermogravimetric analysis and studied for the preconcentration and determination of trace Pb(II) ions from solution samples. The anionic complex of Pb(II) and iodide was retained on the resin by the formation of an ion associate with Brilliant Green on Amberlite XAD-2 in weak acidic medium. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of the functionalized resin is 53.8 mg/g. The chelating resin can be reused for 20 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 103% was obtained for the metal ion with 0.1 M EDTA as the eluting agent. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The resin was subjected to evaluation through batch binding and column chromatography of Pb(II). The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir, Freundlich, and Temkin models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined to be 0.192, 13.189, and 3.418 at pH 5.5 and 25 degrees C. The method was applied for lead ion determination in tap water samples.  相似文献   

5.
A simple method is proposed for the determination and speciation of Mn(II) and Mn(VII) in waters utilizing a macroporous resin, Amberlite XAD-7HP. The batch method was employed and flame atomic absorption spectrometry was used in all determinations. Amberlite XAD-7HP resin was shown to retain Mn(VII) between pH 4 and 12. If the solution contains only one of the species, either Mn(II) or Mn(VII), the resin behaves selectively depending on the pH of the solution. The elution from the sorbent was realized using K2C2O4 in HNO3. The efficiency of the method was checked via spike recovery experiments. The proposed method was successfully applied to industrial wastewater samples and quantitative recoveries (≥96.0%) confirmed the accuracy of the method.  相似文献   

6.
A new chelating resin, 1-(2-pyridylazo)-2-naphthol (PAN) coated Amberlite XAD-1180 (AXAD-1180), was prepared and used for the preconcentration of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were pH 9.5 and 3 M HNO3, respectively. The sorption capacity of the resin was found to be 5.3 mg/g for Cd and 3.7 mg/g for Ni. The detection limits for Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) were 0.7, 10, 3.1, 29 and 0.8 μg/L, respectively. The effects of interfering ions for quantitative sorption of the metal ions were investigated. The preconcentration factors of the method were in the range of 10–30. The recoveries obtained were quantitative (≥95%). The standard reference material (GBW07605 Tea sample) was analysed for accuracy of the described method. The proposed method was successfully applied to the analysis of various water, urea fertilizer and tea samples. The article is published in the original.  相似文献   

7.
Gold in ores was determined by flame atomic absorption spectrometry following on-line preconcentration by sorbent extraction in a flow-injection system. The medium polarity adsorption resin Amberlite XAD-8 packed in a 220-μl micro-column was used to collect gold(III) from hydrochloric acid sample solutions for 40 s at 7.6 ml/min. Ethanol was used to elute the adsorbed analytes into the nebulizer. Optimization studies were made on sample loading rate, elution rate and sample acidity. Some possible interferences on the determination are discussed. A 35-fold enrichment was achieved at a sampling frequency of 60 h?1 and with an RSD of 1.4%. The detection limit (3σ) and 2 μg l?1. Results for gold in ore samples showed good agreement with those obtained using activated carbon adsorption preconcentration. The recoveries were 97–108%.  相似文献   

8.
When groundwater reservoirs situated in agriculturally used areas are assigned as future potable water supplies, it has to be provided that traces of plant protection agents used in this area can be monitored in this groundwater. A method is described for the simultaneous quantitative determination of atrazine, pyrazon and lindane in potable water at the (sub-)ppb level. An adsorption column filled with Amberlite XAD-2 microporous resin advantageously replaces other preconcentration techniques. The concentrated eluate is analyzed by capillary gas chromatography without further purification. The recovery is 80% for atrazine and lindane at the 0.1 ppb level and 40% for pyrazon (1 ppb). The method was tested using tap water from the public water supply network. The complete procedure including sample preparation, preconcentration by adsorption on a macroporous resin, elution with diethyl ether, evaporation to dryness, addition of internal standard solution and capillary gas Chromatographic analysis is carried out in less than three hours (sample volume: 11).  相似文献   

9.
Merdivan M  Düz MZ  Hamamci C 《Talanta》2001,55(3):639-645
The sorption of U(VI) by N, N-dibutyl, N'-benzoylthiourea (DBBT) impregnated resin has been studied. DBBT impregnated resin was prepared by direct adsorption of chelating ligand onto macroporous support, Amberlite XAD-16. The adsorption of DBBT on the macroporous support is shown by FTIR spectroscopy to be the result of only weak chelating ligand-support interactions. Parameters such as the pH effect on the sorption of uranium, the sorption capacity of the impregnated resin, the stripping of uranium and the effect of coexisting ions were investigated by batch experiments. The results demonstrated that uranium(VI) ions, at pH 4.5-7 could be sorbed completely using 0.1 g Amberlite XAD-16 resin loaded with DBBT. The sorption capacity of the impregnated resin is 0.90 mmol uranium(VI) g(-1). Quantitative recovery of U(VI) is achieved by stripping with 0.1 M HNO(3). The method was applied to the determination of uranium in synthetic samples. The precision of the method was 2.4 RSD% in a concentration of 1.20 mug ml(-1) for ten replicate analysis.  相似文献   

10.
An on-line lead preconcentration and determination system implemented with inductively coupled plasma-atomic emission spectrometry (ICP-AES) with ultrasonic nebulization (USN) in association with flow injection was studied. For the preconcentration of lead, a Pb-quinolin-8-ol complex was formed on-line at pH 6.8 and retained on Amberlite XAD-16 resin. The lead was removed from the microcolumn by countercurrent elution with nitric acid. A total enhancement factor of 225 was obtained with respect to ICP-AES with pneumatic nebulization (15.0 for USN and 15.0 for the column). The detection limit for Pb for the preconcentration of a 10 mL wine sample was 0.15 microg/L. The precision for 10 replicate determinations at a Pb level of 25 microg/L was a relative standard deviation of 2.5%, calculated from the peak heights obtained. The calibration graph obtained by using the preconcentration system for lead was linear with a correlation coefficient of 0.9995 for levels near the detection limit up to > or = 1000 microg/L. The method was successfully applied to the determination of lead in wine samples.  相似文献   

11.
Titanium dioxide nanoparticle dynamically loaded with 8-hydroxyquinoline (nanometer TiO2-Oxine) was used as a solid-phase extractant for the preconcentration of trace amounts of aluminum(III) and chromium(III) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for preparing nanometer TiO2-Oxine were obtained. Also, the separation/preconcentration conditions of analytes, including the effects of the pH, the sample flow rate and the volume, the elution solution and the interfering ions on the recovery of the analytes were investigated. At pH 6.0, the adsorption capacity of nanometer TiO2-Oxine was found to be 5.23 mg g(-1) and 9.58 mg g(-1) for Al(III) and Cr(III), respectively. An enrichment factor of 50 was achieved by this method, and the detection limits (3sigma) for Al(III) and Cr(III) were 1.96 and 0.32 microg L(-1) respectively. The proposed method was applied for the determination of trace Al(III) and Cr(III) in biological samples and lake water with satisfactory results.  相似文献   

12.
An on-line bismuth preconcentration and determination system implemented with hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-AES) associated to flow injection (FI) was studied. Quinolin-8-ol and Amberlite XAD-7 were used for the retention of bismuth, at pH 4.5. The bismuth complex was removed from the micro-column with nitric acid. The detection limit value for the preconcentration of 100 ml of aqueous solution was 0.02 ng ml(-1) with a relative standard deviation (R.S.D.) of 3.5%, calculated from the peak heights obtained. The calibration graph using the preconcentration system for bismuth was linear with a correlation coefficient of 0.999 at levels near the detection limits up to at least 100 ng ml(-1). The method was successfully applied to the determination of bismuth in human urine samples.  相似文献   

13.
In the present paper, a system for on-line preconcentration and determination of copper by flame atomic absorption spectrometry (FAAS) was developed. It was based on solid phase extraction of copper(II) ions on a minicolumn of Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation process was carried out using Doehlert designs. Four variables (sampling flow rate, SR; elution flow rate, buffer concentration, BC; and pH) were regarded as factors in the optimisation. The parameter “sensitivity efficiency (SE)” proposed in this paper, and defined as the analytical signal obtained for an on-line enrichment system for a preconcentration time of 1 min was used as analytical response in the optimisation process. Using the established experimental conditions, the proposed on-line system allowed determination of copper with detection limit (3σ/S) of 0.23 μg l−1, and a precision (repeatability), calculated as relative standard deviation (R.S.D.) of 3.9 and 3.7% for copper concentration of 5.00 and 20.00 μg l−1, respectively. The preconcentration factor obtained is 62. The recovery achieved for copper determination in presence of several cations demonstrated that this has enough selectivity for analysis of food samples. The robustness of the proposed system was also evaluated. The accuracy was confirmed by analysis of the following certified reference materials (CRMs): Rice flour NIES 10a, Spinach leaves NIST 1570a, Apples leaves NIST 1515 and Orchard leaves NBS 1571. This procedure was applied for copper determination in natural food samples.  相似文献   

14.
A procedure for the determination of trace amount of cadmium after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been proposed. This chelate is adsorbed on the adsorbent in the pH range 3-8 from large volumes of aqueous solution of water samples with a preconcentration factor of 200. After being sorbed, cadmium was eluted by 5 mL of 2.0 mol L(-1) nitric acid solution and determined directly by flame atomic absorption spectrophotometery (FAAS). The detection limit (3sigma) of cadmium was 0.32 microg L(-1). The precision of the proposed procedure, calculated as the relative standard deviation of recovery in sample solution (100 mL) containing 5 microg of cadmium was satisfactory (1.9%). The adsorption of cadmium onto adsorbent can formally be described by a Langmuir equation with a maximum adsorption capacity of 19.6 mg g(-1) and a binding constant of 6.5 x 10(-3) L mg(-1). Various parameters, such as the effect of pH and the interference of a number of metal ions on the determination of cadmium, have been studied in detail to optimize the conditions for the preconcentration and determination of cadmium in water samples. This procedure was applied to the determination of cadmium in tap and river water samples.  相似文献   

15.
Ramesh A  Rama Mohan K  Seshaiah K 《Talanta》2002,57(2):243-252
Preconcentration of Cd(II), Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) in saline matrices on Amberlite XAD-4 resins coated with ammonium pyrrolidine dithiocarbamate (APDC) and piperidine dithiocarbamate (pipDTC) and subsequent determination by inductively coupled plasma atomic emission spectrometry were studied. Parameters such as effect of pH, effect of HNO(3) concentration on elution of metals from resin were studied. The results show that Amberlite XAD-4 coated with APDC was more efficient in the recovery of metal ions compared with Amberlite XAD-4 coated with pipDTC, in the concentration range of 0.1-200 mug l(-1), for 1 g of Amberlite XAD-4 coated resin. The detection limits for Cd(II), Cu(II), Mn(II), Ni(II), Pb(II), Zn(II) are 0.1, 0.4, 0.3, 0.4, 0.6, 0.5 mug l(-1), respectively, for resin coated with APDC and 0.7, 1.0, 0.8, 0.9, 1.7 and 1.2 mug l(-1) for resin coated with pipDTC. The effect of diverse ions on the determination of aforesaid metals was studied. The method was applied for the determination of trace metal ions in artificial sea water and natural water samples. The results were compared with extraction AAS method.  相似文献   

16.
The 1,3-diaminepropane-3-propyl-anchored silica gel (DAPPS) was successfully employed as a sorbent in a spectrophotometric flow system for the preconcentration of Cu(2+) in digests of biological materials (maize powder, soybean, citrus leaves, corn stalks) as well as water samples (river, stream, streamlet, springwater and well). The system presented a minicolumn packed with DAPPS, where the sample solution was passed through it for a period of time, and subsequently, an eluent solution, stripped-out the retained analyte which was further determined with DDTC at 460 nm. The better preconcentration conditions utilized were: 120s loading, 60s elution, 30s regeneration of the column, loading flow rate 6.5 ml min(-1), buffer solution for the preconcentration and regeneration of the column-borate buffer pH 8.5, elution flow rate 2.3 ml min(-1), time of elution 60s, eluent composition, 0.4 mol l(-1) HNO(3). Under these conditions, the preconcentration factor obtained was 36, and the detection limit achieved was 8.4 ng ml(-1) in water samples and 0.84 microg g(-1) in biological material. The maximum adsorption capacity of DAPPS to Cu(2+) was 0.49 mmol g(-1) (31.1 mg g(-1)) obtained in a batch system. The recovery of copper in the water samples ranged from 96.9 to 102.4% and in the biological materials ranged from 97.0 to 102.6%.  相似文献   

17.
A procedure for separation and preconcentration of trace amounts of copper in natural water samples, has been proposed. It is based on the adsorption of copper(II) ions onto a column of Amberlite XAD-2 resin loaded with calmagite reagent. This way amounts of copper within the range from 0.0125 to 25.0 μg, in a sample volume of 25 to 250 ml, and pH from 3.7 to 10.0 was concentrated as calmagite complex in a column of 0.50 g of Amberlite XAD-2 resin. Copper (II) ion was desorpted by using 5.0 ml of 2 mol l−1 hydrochloric acid. Detection and determination limits of the proposed procedure for 250 ml sample volume were 0.15 and 0.50 μg l−1, respectively. Selectivity test showed that (in the indicated concentration), calcium(II) (500 mg l−1), magnesium(II) (500 mg l−1), strontium(II) (50 mg l−1), iron(III) (10 mg l−1), nickel(II) (10 mg l−1), cobalt(II) (10 mg l−1), cadmium(II) (10 mg l−1) and lead(II) (10 mg l−1) did not interfere in copper determination by this procedure. Precision of the method, evaluated as the relative standard deviation by analyzing a series of seven replicates, was 2.42% for a copper mass of 1.0 μg in a sample volume of 100 ml. The accuracy of the proposed procedure was evaluated by means of copper determination in reference biological samples. The achieved results were in good agreement with certified values. The extractor system had a sorption capacity of 1.59 μmol of copper per gram of resin loaded with calmagite. The proposed procedure was applied for copper determination by FAAS in natural water samples. Samples were collected from different places of Salvador city, Bahia, Brazil. The achieved recovery, measured by the standard addition technique, showed that the proposed procedure had good accuracy. A good enrichment factor (50×) and simplicity are the main advantages in this analytical procedure.  相似文献   

18.
Soylak M  Elçi L  Dogan M 《Talanta》1995,42(10):1513-1517
A method for the preconcentration of trace amounts of tungsten as its thiocyanate complex, using a column filled with Amberlite XAD-1180 resin, is proposed. After elution with a small volume of acetone, the analyte was determined spectrophotometrically with potassium thiocyanate and stannous chloride. The influence of several ions, as interferents, is discussed. The proposed method was applied to the determination of tungsten in geological samples with good analytical results, such as recoveries of 95% or above, relative standard deviations of 6% or below (n = 10) and a detection limit of 12 mugl(-1).  相似文献   

19.
A sensitive technique for the determination of trace Cu(II) in various samples after column preconcentration by adsorbing onto pulverized Amberlite XAD-4 loaded with N-benzoylphenylhydroxylamine (BPHA) was developed. Several experimental conditions, such as the size of XAD-4, adsorption flow rate, pH of sample solution, and so forth, were optimized. The interfering effects of diverse concomitant ions were investigated. Al(III), Fe(III), Ni(II), and Co(II) interfered, but the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BPHA resin to 0.30 g. The dynamic range, the correlation coefficient (R2), and the detection limit obtained by the proposed technique were 1.0–60, 0.9953, and 0.83 ng/mL, respectively. For validating the technique, the aqueous samples (stream water, reservoir water, and wastewater), the diluted brass sample, and the plastic sample were used as real samples. Recovery yields of 94–102% were obtained. These measured data were not different from ICP-MS data at the 95% confidence level. This method was also validated by rice flour CRM (normal, fortified) samples. Based on the results of the experiment, it has been found that the proposed technique can be applied to the determination of Cu(II) in various real samples. The text was submitted by the authors in English.  相似文献   

20.
《Analytical letters》2012,45(2):322-342
Abstract

The isolation, identification and characterization of bacteria obtained from soil of Ergani Makam Mountain were performed and the results revealed that the bacteria were thermophilic Anoxybacillus caldiproteolyticus. The characterized bacteria and purchased Geobacillus stearothermophilus were immobilized on Amberlite XAD-16 in order to prepare two biosorbents for preconcentration experiments for the determination of cadmium (II) ions. The produced biosorbents were enriched separately using mini-columns and the analyte was determined by flame atomic absorption spectrometry. The effects of solution parameters were investigated for the separation and preconcentration yields. The recovery efficiencies of Amberlite XAD-16 immobilized separately with A. caldiproteolyticus and G. stearothermophilus were determined to be 98.23?±?2.40 and 98.93?±?1.3 (n?=?5) for the optimum working conditions, respectively. Moreover, the Cd (II) ion was recovered with 10?mL of 1?mol L?1 of HCl and 2?mL of 0.5?mol L?1 HNO3 solutions. The optimum working conditions were determined to be at pH 6.0 and a flow rate of 2?mL min?1 for both biosorbents. The recovery efficiencies of matrix ions were characterized to investigate the feasibility of the developed preconcentration methods. The accuracy of the proposed methods were controlled by analyzing a SCP Science EnviroMAT Waste Water, Low (EU-L-2) certified reference material. The obtained results were comparable to the certified values. These methods were also applied to the analysis of water samples from Dicle River, Hazar Lake and Diyarbak?r tap water for Cd (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号