首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear spray atomization and deposition is an attractive technique to produce near-net-shape deposits, such as aluminum sheet and strip. In the present study, phase Doppler interferometry (PDI) was used in a backscatter mode to characterize, in situ, the droplet size and velocity distributions during linear spray atomization and deposition of a 3003 aluminum alloy. The PDI measurements were obtained along axes corresponding to the direction parallel to the nozzle slit and to the direction perpendicular to the slit. The PDI results delineate the temporal and spatial distribution of the droplet size and velocity during the metal spray. Both point and “line” measurements were obtained and are reported. The line measurements resulted from the integration of measurement made along a line scan obtained in real time (i.e., not ensemble averaged). Postrun analysis of the droplet size distribution using laser diffraction and sieving techniques is also reported. The PDI point measurements revealed that droplet size and velocity distribution were relatively invariant with time. The line measurements of droplet velocity showed that the droplet axial velocity exhibits a bimodal behavior, which becomes more apparent with increasing atomizing gas pressure, a result of droplet recirculation inside the spray chamber. In addition, the peak in the droplet axial velocity distribution increased as atomizing gas pressure increased. The line characterization also showed that the droplet size distribution became more homogeneous with increasing gas pressure, and that the distribution characteristic diameters of droplets decreased consistently with increasing gas pressure. Postrun characterization of the droplet size distribution of the entire metal spray using diffraction and sieving methods indicated that the mass (volume) median diameter D 50 and the Sauter mean diameter (SMD) D 32 decreased with increasing gas pressure in a manner consistent with PDI results.  相似文献   

2.
《Acta Metallurgica Materialia》1993,41(11):3109-3118
A computer model has been developed to describe the in-flight dynamic and thermal histories of gas atomised droplets as a function of distance during spray forming. The model has been used to investigate the effects of the dynamic and thermal behaviour of individual gas atomised droplets and the cooling and solidification behaviour of the overall spray. The most influential parameters for a given alloy system, in order of importance, are: (i) droplet diameter and, therefore, the droplet size distribution within the spray; (ii) initial axial gas velocity at the point of atomisation and the subsequent gas velocity decay profile; (iii) melt mass flow rate; (iv) melt superheat at the point of atomisation; and (v) alloy composition. Experimental measurements of gas velocities and droplet size distributions during spray forming allow the spray solid fraction at deposition to be calculated and used in a subsequent computer model of billet heat flow to predict the billet top surface temperatures and solid fractions.  相似文献   

3.
马樊  刘青  张江山  王超  孙建坤  李明 《钢铁》2022,57(10):101-109
 连铸二冷区铸坯表面温度通常高于900 ℃,此时喷淋液滴接触高温铸坯时不会湿润铸坯表面,仅在其上形成一层蒸汽膜,阻碍了液滴与铸坯表面接触传热。针对以上问题,以国内某钢厂连铸二冷区的扁平型水喷嘴为原型,建立了喷嘴射流仿真计算模型,并对所建模型进行了理论和实验室验证;采用数值模拟的方法研究了喷嘴自由射流区的流场分布,运用连铸喷嘴冷却检测系统测量获得了射流液滴粒径演变规律;结合数值模拟和实验室测定结果,定量分析了喷嘴在不同水流量下射流液滴冲击铸坯表面蒸汽膜深度的变化规律。结果表明,该喷嘴的最大射流速度在喷嘴出口处,射流在喷嘴出口附近出能维持较大的射流速度,且随着水量的增加,射流保持高射流速度的距离也增长;整体射流的轴向速度占比均在80%以上。当喷淋水量越大时,射流液滴粒径变得越小;随着距喷嘴出口距离的增加,射流中心处的液滴粒径逐渐增大并达到最大值;当水流量为9和12 L/min时,液滴粒径基本相同,这表明当水流量增加到一定值时,冷却水量的增加不影响液滴粒径分布。在不同水流量下,随着喷淋距离的增加,液滴穿透铸坯表面蒸汽膜深度呈先增大后略微减小的变化规律,在喷射距离为100~200 mm范围内时,液滴穿透深度最大,这表明喷射高度在该范围时,喷淋冷却效果最好。  相似文献   

4.
Three-dimensional magneto-hydrodynamic flow is numerically modeled in an industrial-scale electric furnace and the trajectories of nickel droplets are simulated. Calculations are carried out for varied droplet sizes and locations. The droplet settling ratio is introduced to describe the settling performance. Characteristic curve of the settling ratio with the droplet size is obtained. The droplet settling behavior is demonstrated by both the droplet volume fraction distribution and the droplet trajectories. Numerical predictions show that most of the droplets will settle into the matte in the central bottom region of the furnace. The fine droplets with a diameter less than 50 μm are unable to fall into the matte. The settling ratio increases with increasing the droplet size. The coagulation of droplets to form relatively large droplets may play an important role in the process of nickel matte droplet settling. The average residence time of droplets generally decreases with an increase in droplet size. The residence time for some droplets can be very long (over 5000 seconds). The turbulent droplet dispersion has a significant effect on the trajectories of the droplet and should be taken into account in simulation.  相似文献   

5.
A mathematical model to describe the solidification behavior of an atomized droplet during flight, in terms of nucleation temperature, recalescence temperature, nucleation position, solid fraction at nucleation temperature, and droplet temperature and velocity, is formulated. The concept of transient nucleation is applied to model the short nucleation event. A maximum droplet velocity exists, beyond which the droplet velocity shows an inflection phenomenon during the flight. The velocity of smaller droplets is higher at a shorter flight distance and lower at a longer flight distance. Variations of the gas flow patterns have more effects on smaller droplets, and the effects are more significant at a longer flight distance. A minimum surface heat-transfer coefficient exists as the droplet flies. Prior to nucleation or recalescence, smaller droplets have lower temperature at a given flight distance. Smaller droplets have lower nucleation temperature. Medium-size (around 80-μm) droplets fly over the shortest flight distance before the nucleation starts. Smaller droplets have a larger solid fraction at the end of recalescence. Atomization gas has more effects on the droplet momentum than on the heat content of the droplet.  相似文献   

6.
A mathematical representation has been developed and computed results are presented describing the spreading of droplets impacting onto a solid substrate. Problems of this type are of major practical interest in plasma spraying (PS) and in spray forming (SF) operations. While the present study was confined to the fluid flow aspects of the process, information has been generated on both the final splat dimensions and on the time required to complete the spreading process. Through this treatment, it is possible to relate these quantities (the splat size and the spreading time) to the operating conditions,i.e., droplet size and droplet velocity, and material properties. The theoretical predictions were found to be in good agreement with both Madejski’s asymptotic solution[17] and with available experimental results. For typical SF conditions (droplet sizes in the 100-μm range and droplet velocities in the 100 m/s range), the spreading times were of the order of microseconds,i.e., significantly shorter than the estimated solidification time. formerly Graduate Student, Postdoctoral Associate.  相似文献   

7.
8.
In this article, the thermal history and cooling rate experienced by gas-atomized Al-based amorphous powders were studied via numerical simulations. Modeling simulations were based on the assumption of Newtonian cooling with forced convection, as well as an energy balance, which involves gas dynamics, droplet dynamics, and heat transfer between gas and droplet. To render the problem tractable, phase transformations, crystal nucleation, and growth were not taken into account in the analysis of the solidification of Al droplets; instead, an energy balance approach was formulated and used. The numerical results and associated analysis were used to optimize processing parameters during gas atomization of Al-based amorphous powder. The results showed that the cooling rate of droplets increases with decreasing powder size and can reach in excess of 105 K/s for powder <20 μm in diameter. Gas composition has a more significant influence on cooling rate than gas pressure, and 100 pct He has the highest cooling effect. The results also showed that the cooling rate increases with increasing melt superheat temperature.  相似文献   

9.
Simulation of two‐phase flow in a copper flash smelting settler with simultaneous tapping of slag and matte is carried out using Eulerian‐Eulerian two‐fluid model and the flow and heat transfer performance of slag and matte is examined. Detailed velocity vectors, temperature and volume fraction distributions are obtained. The results show that the small copper droplets will be suspended in the slag. When the droplet diameter is large enough, the slag and matte layer are clearly formed and the dispersion layer between the slag and matte layers becomes thinner at larger droplet sizes and its thickness remains nearly unchanged when the copper droplet diameter is larger than about 500 μm.  相似文献   

10.
The motion and shape of a vertically falling flat rectangular jet of liquid metal issuing from an inclined plane is analysed numerically and analytically. The jet is affected by surface tension and gravity. The main interest in this problem originates from the technological application of the direct strip casting process, which is a novel process to cast steel strips in a thickness range from 2 to 15 mm with a minimum or no hot-rolling. In this process the liquid metal is fed onto a single endless horizontal belt that runs between two rollers. The bottom of the belt is cooled by water. One of the techniques to feed the liquid metal is down an inclined plane. Due to disturbances in the flow, for instance slag in the liquid metal, the jet issuing from the inclined plane may split into two or several jets. The large convergence of the individual jets causes an unfavourable non uniform distribution of the liquid metal over the belt. In the analysis of the present paper it is shown, using an expansion in the inverse Froude number, that the convergence of a single jet depends to zero order on the inverse square root of the Weber number We?1/2 = (γl(ρw02 h0))1/2. Small convergence of the jet is found for large Weber numbers, which can be accomplished with a large initial velocity w0.  相似文献   

11.
Measurements of particle size, velocity, and relative mass flux were made on a spray field produced by aspirating liquid tin into 350 °C argon flowing through a venturi nozzlevia a small orifice in the throat of the nozzle. Details of the aspiration and droplet formation process were observed through windows in the nozzle. The spatial distribution of droplet size, velocity, and relative number density was measured at a location 10 mm from the nozzle exit. Due to the presence of separated flow in the nozzle, changes in nozzle inlet pressure did not significantly effect resulting droplet size and velocity. This suggests that good aerodynamic nozzle design is required if spray characteristics are to be controlled by nozzle flow. This article is based on a presentation made in the symposium “Spray Processing Fundamentals: Coating and Deposition” presented as part of the 1990 TMS Fall Meeting, October 9, 1990, in Detroit, MI, under the auspices of the TMS Synthesis and Analysis in Materials Processing Committee.  相似文献   

12.
A model of heat transfer and fluid flow during the sequential impingement of two liquid Al-33 wt pct Cu droplets on a 304 stainless steel substrate has been developed on the FLUENT 6.3.16 platform. The model was validated using the Jackson–Hunt theory (K.A. Jackson and J.D. Hunt: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1129–42). During the impingement of the second droplet on the first splat, transient air gap formation and remelting of solidified region of the first splat occurred.  相似文献   

13.
Copper and D2 tool steel powders were produced using a drop tube-impulse atomization technique. In order to measure the radiant energy and droplet size of atomised D2 steel droplets, DPV-2000 (Tecnar Automation Ltée, St. Hubert Quebec, Canada) was utilised. In-situ velocity and droplet size of the atomised droplets were also measured using shadowgraphy technique (Sizing Master Shadow from LaVision GmbH in Gottingen, Germany). A 3D translation stage was designed, constructed and installed inside the drop tube system. DPV-2000 and shadowgraph were then mounted on the translation stage. The Cu droplets were primarily used to calibrate to particle size and velocity measurements between both instruments. Using this stage, online measurements were conducted at 4?cm, 18?cm and 28?cm distances for D2 droplets below the crucible. Using liquid (fully undercooled) and semi-solid behaviour of droplets, it was possible to estimate the droplet size and temperature at which recalescence ends. These values were then confirmed by the thermal model using experimentally estimated primary phase undercooling values.  相似文献   

14.
The water spray patterns discharged from an atrium sprinkler are studied in this paper. Equations for calculating the size distribution and the trajectory of the droplets in the water spray are reviewed. The trajectories of water droplets are studied by solving the equation of motion, with the velocity components of droplets expressed in analytical form. A new droplet size distribution function for the water spray derived earlier from information theory was used. The shape of the sprinkler water sprays was calculated. Results are useful in studying the interaction between sprinkler and free-induced airflow. Furthermore, dividing the spray radius into different parts, the volume of water received at the floor level was calculated to determine an important parameter: the water distribution function.  相似文献   

15.
The solidification of spherical droplets with a discrete melting temperature is analyzed using an enthalpy model. Equations describing the cooling of the initially superheated liquid droplet and a numerical heat flow model for its subsequent solidification are presented. Important parameters like times for initiation and completion of solidification, cooling rates and interface velocities in aluminum, iron, and nickel are related to the process variables governing the rate of heat extraction from the droplets. The analysis is performed for the range of Biot numbers of practical interest where Newtonian cooling models are not considered applicable, 0.01 ≤ Bi ≤ 1.o, and the results are presented in the form of normalized or dimensionless quantities. It is shown that the average cooling rate in the liquid prior to solidification can be computed with the Newtonian cooling expressions. However, significant temperature gradients are noted at the droplet surface even for Biot numbers as low as 0.01. Reducing the droplet diameter reduces the time necessary for the initiation and completion of solidification, increases the interface velocities at equivalent fractions solidified and decreases theG L /R ratio. Although smaller droplet diameters promote higher cooling rates in the liquid at the beginning and in the solid at the end of solidification, the effect at the intermediate stages is more complex and depends on the initial superheat, the Biot number and the thermophysical properties of the material. Formerly Professor in the same Department.  相似文献   

16.
17.
The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of SiC particles occurred during droplet solidification. A comparison of the present results to those anticipated from well-established kinetic and thermodynamic models led to some interesting findings. First, the models proposed by Boiling and Cisse[24] and Chernovet al.[58] predict relative low critical interface velocities necessary for entrapment, inconsistent with the present experimental findings. Second, although the observed correlation between the critical front velocity and droplet diameter was generally consistent with that predicted by Stefanescuet a/.’s model,[27] the dependence on the size of SiC particles was not. In view of this discrepancy, three possible mechanisms were proposed to account for the experimental findings: nucleation of α-Al on SiC particles, entrapment of SiC particles between primary dendrite arms, and entrapment of SiC particles between secondary dendrite arms.  相似文献   

18.
A nonintrusive method, based on the planar laser imagery technique, was developed to capture images of droplets dispersed in turbulent flow without disturbing the flow field. The methodology and technique of capturing the images, processing, recognition, and measurement were presented. Experimental findings show that this is a workable method in laboratory investigations of droplet dispersion. Results of droplet size distribution obtained and their comparison with those in the literature indicated that the proposed nonintrusive method was successful at capturing fast-moving droplets in turbulent flow without disturbing the flow field. The image processing methodology adopted to recognize and measure the droplets was found to be efficient and effective. The results of the normalized droplet size distribution (number frequency) depicts clearly discernible self-similarity characteristics.  相似文献   

19.
A Rayleigh atomization technique is employed to produce streams of evenly spaced, monosized droplets of molten metal. We study the effects of variations in selected process parameters upon the droplet formation mechanism and the morphology and microstructure of resulting deposits. Initial tests with alcohol jets show that changes in the flow velocity, drive frequency, and destabilization amplitude have a significant effect upon the efficiency of droplet formation and the uniformity of the droplet stream. For instance, an integer-multiple increase in the flow velocity shifts the frequency threshold for stable jet breakup by an integer multiple of its original value. In addition, the optimal frequency range broadens at higher flow velocities. Microstructural studies on Sn/Pb droplets formed using this approach show signs of rapid solidification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号