首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induced or constitutive production of secondary metabolites is a successful plant defence strategy against herbivores which can be mediated by plant associated micro-organisms. Several grass species can be associated with an endophytic fungus of the genus Epichloë which produces herbivore toxic or deterring alkaloids. Besides these direct defences, herbivorous insects are controlled via indirect plant defence mechanisms by attracting predators. Recent studies indicate that Epichloë endophytes can improve the grass emitted volatile organic compounds towards herbivore deterrence. Due to their defensive mutualistic function, we hypothesize that Epichloë altered plant volatiles can attract aphid predators and contribute to an increased indirect plant defence. With a common garden study, we show that hoverfly (Syrphidae) larvae and pupae were more abundant on endophyte-infected plants compared to uninfected plants. Our results indicate that the Epichloë endophyte provides, besides direct defence (alkaloid), indirect plant defence by improving the plant odor attracting more olfactory foraging aphid predators. Future research is needed in order to understand: (I) whether endophyte-mediated changes in plant volatiles are induced herbivore specific, (II) whether there is a trade-off between endophyte-mediated direct and indirect plant defence, (III) whether the endophyte produces volatiles or induces a change in plant-derived volatiles, (IV) the role of plant signals in endophyte-mediated plant defence.  相似文献   

2.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

3.
We compared the emigration rates of Amblyseius womersleyi from prey patches (leaf disks) of different conditions in airflow containing either infested plant volatiles (volatiles airflow) or uninfested plant volatiles (control airflow). Both airflow and prey patch conditions significantly affected the emigration rates. Emigration rates from patches carrying prey products (feces, exuviae, webs, etc.) and prey eggs were significantly lower in control airflow than in volatiles airflow. Under other patch conditions, the rates were lower in control airflow than in volatiles airflow, although the difference was not significant. In both airflows, the lowest emigration rates were observed when predators were in a heavily infested patch. Patches carrying prey products and prey eggs resulted in lower emigration rates than patches carrying eggs alone and patches emitting prey-infested plant volatiles but carrying no prey. Thus, A. womersleyi appears to decide the timing of emigration based on two criteria: prey products in the patch and prey-infested plant volatiles from outside.  相似文献   

4.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

5.
We investigated by olfactometry and feeding‐ and oviposition‐choice‐tests how the highly specialised elm leaf beetle, Xanthogaleruca luteola Müller (Coleoptera: Chrysomelidae), responds to conspecifically induced defences in the field elm Ulmus minor Miller (Ulmaceae). While egg deposition of the beetle induced elms to release volatiles attractive to the egg parasitoid Oomyzus gallerucae Fonscolombe (Hymenoptera: Eulophidae), feeding alone did not. In the present study, females of the elm leaf beetle showed preferences for the odours of twigs induced by low egg deposition and feeding over odours from uninfested twigs. In contrast, heavy infestation rendered elm odours less attractive to the beetles. Feeding and oviposition bioassays revealed an oviposition preference for leaves from uninfested twigs when compared to locally infested leaves. However, beetles preferred to feed upon systemically induced leaves compared to uninfested ones. The different preferences of the elm leaf beetle during host plant approach might be explained by a strategy that accounts for both gaining access to high quality nutrition and avoiding competition or parasitism.  相似文献   

6.
Röder G  Rahier M  Naisbit RE 《PloS one》2011,6(5):e19571
Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.  相似文献   

7.
The attraction of natural enemies of herbivores by volatile organic compounds as an induced indirect defence has been studied in several plant systems. The evidence for their defensive function originates mainly from laboratory studies with trained parasitoids and predators; the defensive function of these emissions for plants in natural settings has been rarely demonstrated. In native populations and laboratory Y-tube choice experiments with transgenic Nicotiana attenuata plants unable to release particular volatiles, we demonstrate that predatory bugs use terpenoids and green leaf volatiles (GLVs) to locate their prey on herbivore-attacked plants. By attracting predators with volatile signals, this native plant reduces its herbivore load – demonstrating the defensive function of herbivore-induced volatile emissions. However, plants producing GLVs are also damaged more by flea beetles. The implications of these conflicting ecological effects for the evolution of induced volatile emissions and for the development of sustainable agricultural practices are discussed.  相似文献   

8.
The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae because relatively low numbers of T. urticae per plant can attract predators. Leaf damage also increased as a function of mite-days until the entire leaf was blanched. T. urticae populations decreased at this time, but predator response to volatiles dropped before the entire leaf was blanched and before the T. urticae population decreased. This result supports our hypothesis that predator response to plant volatiles is linked to and limited by the degree of leaf damage, and that the quantitative response to T. urticae populations occurs only within a range when plant quality has not been severely compromised.  相似文献   

9.
Plants show defensive responses after exposure to volatiles from neighbouring plants infested by herbivores. When a plant’s neighbours host only species of herbivores that do not feed on the plant itself, the plant can conserve energy by maintaining a low defence level. An intriguing question is whether plants respond differently to volatiles from plants infested by herbivores that pose greater or lesser degrees of danger. We examined the secretion of extrafloral nectar (EFN) in lima bean plants exposed to volatiles from cabbage plants infested by common cutworm, two-spotted spider mites, or diamondback moth larvae. Although the first two herbivore species feed on lima bean plants, diamondback moth larvae do not. As a control, lima bean plants were exposed to volatiles from uninfested cabbage plants. Only when exposed to volatiles from cabbage plants infested by spider mites did lima bean plants significantly increase their EFN secretion compared with the control. Increased EFN secretion can function as an indirect defence by supplying the natural enemies of herbivores with an alternative food source. Of the three herbivore species, spider mites were the most likely to move from cabbage plants to lima bean plants and presumably posed the greatest threat. Although chemical analyses showed differences among treatments in volatiles produced by herbivore-infested cabbage plants, which compounds or blends triggered the increased secretion of EFN by lima bean plants remains unclear. Thus, our results show that plants may tune their defence levels according to herbivore risk level.  相似文献   

10.
Knowledge about the orientation mechanisms used by two important predaceous mirids (Macrolophus pygmaeus Rambour and Nesidiocoris tenuis (Reuter)) in finding their prey (whitefly Bemisia tabaci (Gennadius) and the tomato borer Tuta absoluta (Meyrick)) is limited. In a Y-tube olfactometer, we tested the behavioral responses of naïve and experienced predators to uninfested plants, herbivore-induced plant volatiles (HIPVs) from plants infested with T. absoluta and/or B. tabaci, the sex pheromone of T. absoluta, and volatiles produced by plants injured by the predators. Nesidiocoris tenuis responds to volatiles produced by uninfested plants only after experience with the plant, whereas naïve and experienced M. pygmaeus show positive chemotaxis. Both predators are attracted to volatiles from prey-infested plants, and we provide the first evidence that experience affects this response in M. pygmaeus. Infestation of the same plant by both prey species elicited similar responses by the two predators as plants infested by either herbivore singly. Neither predator responded to sex pheromones of T. absoluta. Macrolophus pygmaeus avoided plants injured by conspecifics, while N. tenuis females were attracted by such plants. The implications of these results for augmentative biological control are discussed.  相似文献   

11.
Abstract.  1. We examined the plant-mediated indirect effects of the stem-boring moth Endoclita excrescens (Lepidoptera: Hepialidae) on the leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) in three willow species, Salix gilgiana , S. eriocarpa , and S. serissaefolia.
2. When the stem-boring moth larvae damaged stems in the previous year, willows were stimulated to produce vigorously growing lateral shoots on these stems. These new lateral shoots were significantly longer and the upper leaves had significantly higher nitrogen and water content than current-year shoots on unbored stems, although the carbon content and leaf dry mass were not different between lateral and current-year shoots.
3. In the field, leaf beetle larvae and adults had significantly greater densities on lateral shoots of bored stems than on current-year shoots of unbored stems. A laboratory experiment showed that female beetles had significantly greater mass and fecundity when fed on leaves of newly-emerged lateral shoots. Thus, the stem-boring moth had a positive effect on the temporally and spatially separated leaf beetle by increasing resource availability by inducing compensatory regrowth.
4. The strength of the indirect effects on the density and performance of the leaf beetle differed among willow species, because there was interspecific variation in host quality and herbivore-induced changes in plant traits. In particular, we suggest that the differences in magnitude of the changes among willow species in shoot length and leaf nitrogen content greatly affected the strength of the plant-regrowth mediated indirect effect, coupled with host-plant preference of the leaf beetle.  相似文献   

12.
Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition‐induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life‐history traits.  相似文献   

13.
Many plants respond to herbivory by arthropods with an induced emission of volatiles such as green leaf volatiles and terpenoids. These herbivore-induced plant volatiles (HIPVs) can attract carnivores, for example, predators and parasitoids. We investigated the significance of terpenoids in attracting herbivores and carnivores in two tritrophic systems where we manipulated the terpenoid emission by treating the plants with fosmidomycin, which inhibits one of the terpenoid biosynthetic pathways and consequently terpenoid emission.
In the 'lima bean' system, volatiles from spider-mite-infested fosmidomycin-treated plants were less attractive to the predatory mite Phytoseiulus persimilis than from infested control plants. In the 'cabbage' system, fosmidomycin treatment did not alter the attractiveness of Brussels sprouts to two Pieris butterflies for oviposition. The parasitoid Cotesia glomerata did not discriminate between the volatiles of fosmidomycin-treated and water-treated caterpillar-infested cabbage. Both P. persimilis and C. glomerata preferred volatiles from infested plants to uninfested ones when both were treated with fosmidomycin.
Chemical analysis showed that terpenoid emission was inhibited more strongly in infested lima bean plants than in Brussels sprouts plants after fosmidomycin treatment.
This study shows an important role of terpenoids in the indirect defence of lima bean, which is discussed relative to the role of other HIPVs.  相似文献   

14.
In their defence against pathogens, herbivorous insects, and mites, plants employ many induced responses. One of these responses is the induced emission of volatiles upon herbivory. These volatiles can guide predators or parasitoids to their herbivorous prey, and thus benefit both plant and carnivore. This use of carnivores by plants is termed indirect defence and has been reported for many plant species, including elm, pine, maize, Lima bean, cotton, cucumber, tobacco, tomato, cabbage, and Arabidopsis thaliana. Herbivory activates an intricate signalling web and finally results in defence responses such as increased production of volatiles. Although several components of this signalling web are known (for example the plant hormones jasmonic acid, salicylic acid, and ethylene), our understanding of how these components interact and how other components are involved is still limited. Here we review the knowledge on elicitation and signal transduction of herbivory-induced volatile production. Additionally, we discuss how use of the model plant Arabidopsis thaliana can enhance our understanding of signal transduction in indirect defence and how cross-talk and trade-offs with signal transduction in direct defence against herbivores and pathogens influences plant responses.  相似文献   

15.
Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure.  相似文献   

16.
Undamaged plants are known to suffer less damage from herbivores when previously exposed to airborne factors from neighboring plants that are either infested or artificially damaged. However, to date, the effects of such a defensive phenomenon on performance of herbivorous insects have not been clearly shown. Here, we studied such effects in an interaction between a willow plant, Salix eriocarpa Franchet et Savatier (Salicales: Salicaceae), and a specialist leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae). In a wind tunnel, uninfested willow plants were placed downwind of willow plants infested by leaf beetle larvae for 4 days. As a control, we placed uninfested plants downwind of uninfested plants in the tunnel. After exposure, downwind plants were served to leaf beetle larvae. Pupal weight, larval survival rates, and the leaf area consumed by larvae all decreased significantly, and larval developmental duration increased significantly, when larvae fed on willow plants downwind of infested plants were compared with those downwind of uninfested plants. These results showed that airborne factors from infested willow plants negatively affected the performance of leaf beetle larvae. Further studies are needed to identify the active factor(s) from the infested willow plants affecting the performance of leaf beetle larvae.  相似文献   

17.
18.
Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E)-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.  相似文献   

19.
Methyl salicylate production in tomato affects biotic interactions   总被引:1,自引:0,他引:1  
The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root‐invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non‐infested SAMT‐silenced lines, as it could for wild‐type tomato plants. Moreover, when given the choice between infested SAMT‐silenced and infested wild‐type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT‐silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.  相似文献   

20.
The context‐dependent defence (CDD) hypothesis predicts that defence levels of plant species against herbivory are not fixed but vary with environmental conditions, in a way that is specific for plant species that share evolutionary adaptations to resource conditions exemplified by similar maximum relative growth rates. More specifically, we expected plants from resource‐poor environments to display high defence levels but not when grown under resource‐rich conditions, whereas the reverse – plants from resource‐rich conditions displaying low defence levels but not when grown under resource‐poor conditions – is not necessarily the case. In this study, we used multiple‐choice bioassays in which leaf discs were fed to larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as an efficient and effective way of indicating plant defence levels. This generalist herbivore was capable of detecting both inter‐ and intraspecific differences in defence among plant species. The CDD was tested by exploring the effects of various experimental resource conditions (light, nutrients) upon the herbivore preferences and by comparing these preferences with the maximum relative growth rate of plant species. The experimental results provide general support for the CDD hypothesis with respect to nutrient‐level variation but the effects were not related to the origin of the plant species tested. Variation in light conditions did not result in consistent effects upon herbivore preferences. The CDD therefore can be formulated more precisely as: defence levels of plant species vary under different environmental conditions but in a way that is specific for plant species that share evolutionary adaptations to similar nutrient conditions. This more precise CDD hypothesis is a useful addition to existing optimal‐defence theory because of its focus on the possible plastic effects of resource conditions upon plant defence levels. This is relevant when designing experimental plant–herbivore studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号