首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 672 毫秒
1.
一种白光有机电致发光器件的制备   总被引:11,自引:4,他引:7  
通过对器件结构的优化设计,提高了白光电致发光器件中蓝光成分的发光效率,从而得到了一种较为理想的有机白光电致发光器件。驱动电压为5V时,电流密度J=0.5mA/cm^2,器件的效率达到最大,流明效率为1.92 lm/W,此时器件的发光亮度接近20cd/m^2。色坐标为(x=O.317,y=0.328)。非常接近白光等能点.是色度很好的白光。并且在很大范围内,色度随器件的驱动电压或电流变化不大,当驱动电压变化至15V时。f=232mA/cm^2,色坐标变化至(x=0.338,y=O.353)。在电压为22V时,器件的亮度达到最大,为17 000cd/m^2。此外器件结构相对简单。器件制备的可重复性得到很大程度的改善。  相似文献   

2.
采用真空蒸镀的方法以星形六苯芴类新材料1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene(HKEthFLYPh)作为能量传输层制备了indium-tin-oxide(ITO)/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-(1,1'-biphenyl)-4,4′-diamine(NPB)/HKEthFLYPh/5,6,11,12-tetraphenylnaphtacene(rubrene)/tris(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag的白色有机电致发光器件. NPB和Alq3分别作为蓝色发光层和电子传输层,NPB和Alq3之间的超薄Rubrene层 作为黄色发光层. 结果表明,超薄rubrene层改善了白光器件的色纯度与稳定性,器件的光谱及色坐标几乎不随驱动电压的变化而改变.当rubrene层厚度为0.3 nm时,器件的Commissions Internationale De L′Eclairage (CIE)色坐标为(0.32,0.33). 驱动电压为18 V时,器件的最大亮度为4816 cd/m2.  相似文献   

3.
主要对rubrene黄光发光材料制作0.1nm厚度的超薄发光层的有机电致发光器件作了研究,并配合BCP空穴阻挡层探讨了对器件效率和色坐标稳定性的影响。双超薄rubrene发光层配合BCP空穴阻挡层的有机电致发光器件的性能得到了很好的改善,外加电压6V时,器件电流效率为6.35cd.A-1;外加电压10V时,器件发光亮度达到了7068cd.m-2。另外,在较大的外加电压驱动范围内,器件的色坐标一直保持在(0.49,0.49)。增加的发光效率和良好的色坐标稳定性主要是取决于空穴与电子的注入与输运平衡以及激子在超薄rubrene发光层中稳定性的复合平衡。  相似文献   

4.
针对一般掺杂结构的红光有机电致发光器件效率随外加电压的增加而迅速下降。同时色度逐渐变差的特点,我们引入了在NPB层和Alq3层内同时掺杂DCJTB的具有双发光区的器件结构。制备的双发光区掺杂器件在驱动电压8—20V内发光效率只下降了4%;而色度从8V时的(x=0.6287,y=0.3663)变化到20V时的(x=0.6075,y=0.3841);器件的发光亮度从8V时的178cd/m^2变化到20V时的5962cd/m^2,具有较好的性能水平。观察到器件效率基本上不依赖于外加电压的变化而变化的特性,同时器件也保持一个比较好的色纯度,并对结果进行了分析。  相似文献   

5.
采用真空热蒸镀的方法,在常规的双层器件结构的基础上,设计了三层双异质结有机电致发光器件(OLED):indium-tin oxide(ITO)/N,N′-diphenyl-N,N′-bis(1-naphthyl)(1,1′-biphenyl)-4,4′-diamine(NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)/8-hydroxyquinoline aluminum(Alq3)/Mg∶Ag。通过对器件的电致发光(EL)光谱及器件性能的表征,研究了不同超薄层BCP的厚度对OLED器件性能的影响。结果表明,当超薄层BCP的厚度从0.1nm逐渐增加到4.0nm时,器件的EL光谱实现了绿光→蓝绿光→蓝光的变化;BCP层有效地调节了载流子的复合区域,改变了器件的发光颜色,提高了器件的亮度和发光效率。  相似文献   

6.
利用真空蒸镀方法以N2,N7-二(间甲苯胺基)-N2,N7-二苯基-2,7-二胺基-9,9-二甲基芴[2,7-bis(pmethoxyphenyl-m'-tolylamino)9,9-dimethylfluorene,TPF-OMe]为空穴传输层、8-羟基喹啉铝[tris(8-hydroxyquinolinato)aluminum,Alq3)]作为发光层及电子传输层,制备了双层器件.与制作的典型双层结构N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺[N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-1,1'-biphenyl-4,4'diamine,TPD/Alq3]器件相比,电流密度较大,发光效率低,发光谱峰为516 nm,色坐标为(0.30,0.53),为Alq3材料发光.以TPF-OMe为发光层兼空穴传输层,2,9-二甲基-4,7-二苯基-1,10-菲罗啉(2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline,bathocuproine或BCP)为空穴阻挡层,Alq3为电子传输层,制作三层有机电致发光器件.结果表明,光谱峰值在414 nm,色坐标为(0.20,0.24),为蓝色光,是TPF-OMe材料本身发光,器件在15 V电压下电流密度为1137 mA/cm2,亮度为900 cd/m2,在3 V偏压下有最大流明效率,为0.11 lm/W.基于TPF-OMe材料的器件的击穿温度比基于TPD材料的器件高近20℃,原因可能在于TPF-OMe材料比TPD材料高19℃的玻璃化转变温度(Tg).  相似文献   

7.
结合亚单层的有机发光技术,制备了一种多层有机电致发光器件,其结构为ITO/m-MTDATA (50nm)/ C545T (0.05nm) /DPVBi (d nm)/DCM2(0.05nm)/ Alq (60nm) /LiF(1nm) /Al.荧光材料C545T和DCM2以亚单层的方式插入DPVBi前后,通过改变DPVBi的厚度,观察器件性能的变化,当DPVBi为4 nm时,器件在4V电压下最大发光效率是4.19 cd/A,在13 V电压下最大亮度是17050 cd/m2.分析对比了四种不同厚度器件的电流密度-电压曲线、亮度-电压曲线、电致发光光谱图和色坐标,发现选择合适厚度的激子阻挡层,可以得到效率较高的器件.激子阻挡层一般选择载流子传输能力较差,HOMO能级较低的材料.所得结果对有机发光器件尤其是采用亚单层有机白光器件的设计和制作有一定的指导作用.  相似文献   

8.
在常规的双层绿色有机电致发光器件氧化铟锡(ITO)/N,N′-bis-(1-naphthyl)-N,N′-biphenyl-1,1′-biphenyl-4,4′-diamine(NPB)/8-hydroxyquinolinealuminum(Alq3)/Mg∶Ag的基础上,通过选择适当的空穴阻挡层材料,制备得到以NPB为发光层的蓝色发光器件,其结构为ITO/NPB/bathocuproine(BCP)/Alq3/Mg∶Ag,其最大亮度和最大流明效率分别达到2900cd/m2和0.55lm/W。电致发光谱峰位于445nm,CIE色坐标为(x=0.16,y=0.09),且二者都不随外加电压而变化;利用各功能层的能级结构,对不同结构的器件性能差异进行了分析。  相似文献   

9.
合成了一种深红色发光的聚苯乙烯喹啉(PPV-Q)材料,研究了其光致发光,电致发光及吸收光谱。这种材料在紫外和蓝光区具有很强的吸收能力,波长为463 nm的光对此材料具有最高的激发能力。用此材料作为发光层制备了ITO/PPV-Q/Al结构的电致发光器件,发光光谱的中心波长为670 nm,发光光谱的半高全宽为90 nm左右。在不同驱动电压下,器件电致发光的色坐标(x=0.67, y=0.32)基本上没有变化, 是一种深红色的电致发光。器件中的电流随驱动电压的增加而明显增强,导致器件稳定性的降低。  相似文献   

10.
双空穴注入的绿色磷光有机电致发光器件   总被引:4,自引:0,他引:4       下载免费PDF全文
张静  张方辉 《发光学报》2012,33(10):1107-1111
制作了一种新型绿色磷光有机电致发光二极管。器件结构为ITO/HAT-CN(x nm)/MoO3(30 nm)/NPB(40 nm)/TCTA(10 nm)/CPB∶GIr1(30 nm,14%)/BCP(10 nm)/Alq3(25 nm)/LiF(1 nm)/Al(100 nm),其中X=0,8,10,12,14,15 nm。电流密度-电压-亮度特性表明该结构有利于降低驱动电压和增加器件亮度。当HAT-CN厚度为12 nm时,器件的最高亮度可以达到32 480 cd/m2,起亮电压为3.5 V左右,发光效率为24.2cd/A。所设计的空穴型器件证明该器件结构具有很好的空穴注入和传输特性。  相似文献   

11.
为了提高以TADF材料作为主体、天蓝色荧光材料作为客体的混合薄膜的OLED器件光电性能,我们调整了器件结构,使主体材料发挥其优势。制备了基本结构为ITO/NPB(40 nm)/DMAC-DPS∶x%BUBD-1(40 nm)/Bphen(30 nm)/LiF(0.5 nm)/Al的OLED器件。研究了主-客体材料在不同掺杂浓度下的OLED器件的光电特性。为了提高主体材料的利用率,在空穴传输层和发光层之间加入10 nm的DMAC-DPS作为间隔层;然后,在阳极和空穴传输层之间加入HAT-CN作为空穴注入层,形成HAT-CN/NPB结构的PN结,有效降低了器件的启亮电压(2.7 V)。测量了有无HAT-CN的单空穴器件的阻抗谱。结果表明,在最佳掺杂比例(2%)下,器件的外量子效率(EQE)达到4.92%,接近荧光OLED的EQE理论极限值;加入10 nm的DMAC-DPS作为间隔层,使得器件的EQE达到5.37%;HAT-CN/NPB结构的PN结有效地降低了器件的启亮电压(2.7 V),将OLED器件的EQE提高到5.76%;HAT-CN的加入提高了器件的空穴迁移率,降低了单空穴器件的阻抗。TADF材料作为主体材料在提高OLED器件的光电性能方面具有很大的潜力。  相似文献   

12.
发光层掺杂对红光OLED性能影响研究   总被引:1,自引:1,他引:0  
制备高效率、高亮度的红光有机发光二极管是显示器实现全彩色的关键,对高性能的红光有机发光二极管器件研究具有十分重要的意义.本文主要研究了掺杂剂(DCJTB)浓度对红光有机发光二极管性能影响.实验采用真空热蒸镀的方法,选取结构为ITO/2-TNATA(20 nm)/NPB(30 nm)/AlQ(50 nm):(X%)DCJTB/AlQ(30 nm)/LiF(0.8 nm)/Al(100 nm)的红光器件,在高准确度膜厚控制仪的监控下,实现了有机薄膜功能材料的精确蒸镀.研究表明:红光掺杂剂掺杂浓度为(2.5~3.0)%时,在12 V电压下,可以得到发光亮度最高达到8 900 cd/m2,发光效率大于2.8 cd/A,且发光光谱波长为610~618 nm较为理想的红光有机发光二极管器件.  相似文献   

13.
白光OLED微型显示器在信息显示领域具有重要的应用。采用真空镀膜系统,依次蒸镀Ag/ITO复合薄膜作为阳极结构,共蒸制备Mg∶Ag复合膜作为半透明阴极结构,NPB作为空穴传输材料和黄光主体材料,rubrene作为黄光掺杂料,AND作为蓝光主体料,DSA-Ph作为蓝光掺杂料,Alq3作为电子传输材料,以结构和工艺简化的蓝、黄光互补色来实现白光,通过共蒸发形式制备了结构为Ag/ITO/NPB/NPB∶rubrene(1.5%)/ADN∶DSA-Ph(x%/x=2,5,8)/Alq3/Mg∶Ag的白光OLED微型显示器,利用由Photo Research PR655光谱仪、Keithley 2400程控电源组成的光谱测试系统对器件的光电性能进行表征,研究了蓝光掺杂比对白光OLED微型显器性能的影响。结果表明,随着蓝光掺杂比的增加,白光OLED微型显示器的亮度先增加后降低,蓝光、黄光峰位有所偏移,色坐标发生一定的漂移,蓝光色纯度增加,可通过调控发光材料掺杂比实现白光OLED微型显示器性能的可控制备。初步优化获得的蓝、黄混合白光OLED微型显示器的器件,当驱动电压为5.0 V时,器件亮度达到3 679 cd·m-2,CIE坐标为(0.263,0.355)。  相似文献   

14.
激子形成区域随电场变化的移动会使得有机电致发光器件(OLEDs)的效率和色度发生改变,从而影响器件的性能。文章首先制备了两种OLED器件,器件1为ITO/PEDOT∶PSS/PVK∶Ir(ppy)3∶DCJTB (100∶2∶1 wt)/BCP(10 nm)/Alq3(15 nm)/Al,器件2为ITO/PEDOT∶PSS/PVK∶Ir(ppy)3(100∶2 wt)/BCP(10 nm)/Alq3(15 nm)/Al,研究了电场强度对单层多掺杂结构器件激子形成的影响。实验发现在多掺杂发光层中,随着电压的增加,Ir(ppy)3,PVK和DCJTB的发光均增强,PVK和DCJTB发光增强更快。对其发光机制进行分析,认为较高电场下,载流子获得较高能量,更容易形成高能量激子,产生宽禁带材料PVK的发光;另一方面,从能级结构分析DCJTB的带隙较窄, 俘获更多的载流子发光更强。同时,在器件的电致发光(EL)光谱发现在460 nm处一新的发射峰, 发光随着电压的增大相对减弱。为了研究460 nm发光的来源,制备了器件:ITO/PEDOT∶PSS/PVK∶BCP∶Ir(ppy)3(xy∶2 wt)/Alq3(15 nm)/Al, 改变x, y的比值研究发现,460 nm处的发光依然存在,推测此发光峰应与PVK及BCP之间有关。  相似文献   

15.
利用电子传输性能良好的苯并噻唑螯合锌(Zn(BTZ)2)作为蓝光层,通过设计不同类型的空穴传输层并试验不同厚度的发光层后,制作了一种最佳厚度的双发光层白色电致发光器件:氧化铟锡(ITO)/N-N′-双(3-甲基苯基)-N-N′-二苯基-1-1′-二苯基-4-4′-二胺(TPD)∶N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)(1∶0.0 关键词: 厚度 空穴传输层 白光 载流子  相似文献   

16.
ZnSe(ZnS)纳米晶与MEH-PPV的共掺有机电致发光器件   总被引:1,自引:1,他引:0       下载免费PDF全文
采用水相法合成核壳结构ZnSe/ZnS 纳米晶,经X射线衍射(XRD)分析和透射电子显微镜(TEM)表征,证实所制备的样品为立方晶型闪锌矿结构ZnSe/ZnS量子点。按照一定的质量比将ZnSe/ZnS 纳米晶和有机聚合物MEH-PPV(poly ) 共掺并将其作为发光层,分别制备单层和多层有机电致发光器件,结构为ITO/MEH-PPV∶ZnSe(ZnS)(50 nm)/Al和 ITO/PEDOT∶PSS(70 nm)/ MEH-PPV∶ZnSe(ZnS)(50 nm)/BCP(15 nm)/Alq3(12 nm) /LiF(0.5 nm)/Al。实验结果表明,多层发光器件的发光特性与单层器件不同,工作电压的增大使其发光峰发生了明显的蓝移。  相似文献   

17.
PFO-BT15是一种电致发光中心波长为550 nm的新型共轭高分子聚合物材料,将其制成发光二极管器件,结构为ITO玻璃/聚合物PEDOT(120 nm)/有机聚合物PFO-BT15(80 nm)/Ba(4 nm)/Al(200 nm),用环氧树脂对阴极侧进行了封装,以减少氧气和水分的进入,从而影响器件的发光性能。在室温环境下对同样的器件进行不同电流密度的电老化处理,记录器件的电流电压曲线,再对老化的样品做电致发光和喇曼光谱测试。实验发现:一方面,通过器件恒定电流的大小影响器件的电压变化速度;另一方面,器件经过一定长时间的电老化,电致发光中心波长变化较小。通过啦曼光谱的测试,推断是因为PEDOT阳极的破损导致了器件的最终发光失败,而器件发光层材料的结构保持相对稳定,说明这种结构的聚合物有着相对稳定的光电性能,对于提高材料发光的稳定性提供了有价值的信息,有助于其他高效发光材料的合成以及稳定性的提高。  相似文献   

18.
聚合物级联发光器件   总被引:1,自引:0,他引:1  
基于溶液加工方法制备了聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT∶PSS)/氧化锌(ZnO)/乙氧基化聚乙烯亚胺(PEIE)电荷产生层的聚合物级联发光器件, 发现PEDOT∶PSS层电导和厚度对器件的电流-电压特性影响较小, 不同PEDOT∶PSS对器件发光效率的影响主要来自于其对发光层激子不同的猝灭作用, PEDOT∶PSS厚度为60 nm的级联器件比PEDOT∶PSS 厚度为30 nm的级联器件的发光效率稍高, 原因是PEDOT∶PSS较厚时, 其表面形貌更均匀。级联器件的发光效率和驱动电压分别与发光子单元的发光效率和驱动电压之和相近, 说明在较低的电压下电荷产生层就能够有效产生电荷并注入到发光子单元中,级联器件的发光光谱中包含两个发光子单元的发光光谱,说明两个发光子单元在级联器件中都能正常工作。通过对电荷产生层的电容-电压(C-V)特性的测试, 确认了在电荷产生层中存在电荷的积累过程。证明了PEDOT∶PSS/ZnO/PEIE为有效的电荷产生层。首次报道了包含三个SY-PPV发光单元的级联器件, 三个发光子单元发光效率之和与级联器件的发光效率相当, 其最大发光效率和最大外量子效率分别为21.7 cd·A-1和6.95%。在器件亮度为5 000 cd·m-2时, 器件的发光效率和外量子效率分别为20.5 cd·A-1和6.6%。说明并没有由于发光子单元数目增加而影响级联器件的发光效率。并且其发光光谱和发光子单元的发光光谱相接近。通过 进一步降低CGL中空穴注入层对级联器件的影响有望提高级联器件的发光效率。  相似文献   

19.
制备了一种结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP:TBPe/BAlq:rubrene/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.其中空穴传输型主体NPB掺杂磷光染料Ir(piq)2(acac)作为红色发光层,双载流子传输型主体4,4′-N,N′-dicarbazole-biphenyl (CBP)掺杂TBPe作为蓝色发光层,电子传输型主体材料BAlq掺杂rubrene作为绿色发光层.以上发光层夹于 关键词: 电致发光 磷光染料 异质结 白光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号