首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
采用共沉淀法制备CuZnAl类水滑石前驱体,焙烧后通过等体积浸渍方法制得K含量不同的改性CuZnAl催化剂。借助XRD、H_2-TPR、Raman、N_2吸附-脱附和CO-TPD等方法对催化剂进行表征,并将其应用于合成气制备异丁醇的反应中,进行活性评价。结果表明,K作为电子助剂促进CO转化率的提高,同时对催化剂表面ZnO的分布有影响。K的电子效应增加还原后Cu活性中心的数量,有利于CO在活性组分表面的吸附,因而促进异丁醇的生成。  相似文献   

2.
以等体积浸渍法制备了Zn/HZSM-5和不同含量K改性的K-Zn/HZSM-5催化剂,采用XRD、NH3-TPD、py-IR和N2吸附-脱附等方法对所制备催化剂进行了表征,在HZSM-5催化剂中加入5%质量分数的ZnO,催化剂的总酸量略有增加,L/B酸比值增加;同时又加入不同含量的K2O,随着K2O含量的增加,催化剂的L酸量和L/B酸比值均降低,少量K2O的引入对催化剂酸性质影响较小。以正庚烷为原料考察HZSM-5催化剂以及Zn和K改性后的催化剂的临氢芳构化性能,结果表明,ZnO质量分数为5%、K2O质量分数不超过0.5%时,随着钾含量的升高,改性催化剂的芳构化率和苯、甲苯、二甲苯(BTX)的选择性大幅提高,C9+芳烃的选择性降低,Zn和K改性催化剂的活性和稳定性较好。  相似文献   

3.
《天然气化工》2015,(4):19-23
采用溶胶凝胶法及程序升温碳化法制备了K改性的Ni/β-Mo2C催化剂,通过XRD、N2吸附-脱附分析和TEM等手段表征了催化剂的织构特征。考察了K含量对Ni/β-Mo2C催化剂CO加氢合成低碳醇反应性能的影响。实验结果表明:K改性Ni/β-Mo2C具有较高的CO加氢反应活性,产物以C1-4烷烃为主;适量K助剂的引入能大大提高催化剂的比表面积,有利于提高催化剂的合成低碳醇能力;过量K助剂的引入降低了催化剂的比表面积且与Mo形成了惰性的K2Mo O4,降低了催化剂的活性。  相似文献   

4.
改性甲醇催化剂用于浆态床二甲醚合成反应的研究   总被引:3,自引:0,他引:3  
用共沉淀法、浸渍法制备Mn改性催化剂CuZnAlMn和Mn/CuZnAl。通过H2 -TPR、XRD和目标反应浆态床CO H2 合成二甲醚 ,对Mn改性催化剂的还原性能、体相结构和催化性能进行了研究。H2 -TPR结果表明 ,在CuZnAlMn催化剂上CuO易还原 ,且颗粒分散均匀。XRD结果表明 ,在Mn/CuZnAl和CuZnAlMn上 ,都没有MnO相出现 ,且在CuZnAlMn上能较好的形成CuZn共熔体。合成反应结果表明 ,共沉淀法制备的CuZnAlMn催化剂的反应性能最佳 ;在催化剂中适当提高Al和Zn的含量 ,有利于二甲醚收率的提高 ;2 6 0℃的温度下 ,二甲醚收率高。  相似文献   

5.
采用水热一步合成法制备了SBA 15和Ti SBA 15分子筛,采用等体积浸渍法和H2原位还原法制备了Ni2P/SBA 15和Ni2P/Ti SBA 15催化剂。采用X射线衍射(XRD)、N2吸附脱附(BET)、透射电镜(TEM)、能量色散X射线光谱(EDX)等技术,研究了掺杂Ti原子对SBA 15分子筛及其催化剂形貌和织构性质的影响,并以喹啉为模型化合物,采用微型固定床反应器考察了不同硅/钛摩尔比对催化剂加氢脱氮(HDN)性能的影响。结果表明,Ti的掺杂并没有改变SBA 15高度有序的介孔结构,但改性后载体比表面积略有增大,孔径有所降低;Ni2P/Ti SBA 15中Ti以锐钛矿TiO2和Ti9O17形式存在,而活性组分还原后所形成的物相为Ni2P。Ni2P/Ti SBA 15催化剂的HDN活性均高于Ni2P/SBA 15催化剂,并且不同硅/钛摩尔比的催化剂呈现不同的HDN活性, n(Si)/n(Ti)=25的Ni2P/Ti SBA 15催化剂具有最高的HDN活性。  相似文献   

6.
中国石油兰州石化公司3万t/a甲乙酮(MEK)装置采用正丁烯水合法制备仲丁醇(SBA)、SBA脱氢制MEK的生产工艺。针对脱氢反应初期产物中重组分含量高的问题,基于重组分的生成机理,分析了脱氢反应条件及催化剂钝化工艺对重组分生成的影响,并改进了催化剂钝化工艺。结果表明:升高脱氢反应温度,增大脱氢反应进料量,脱氢产物中的重组分质量分数明显降低;将钝化原料由原来单一的SBA改为SBA和MEK的混合物料,钝化温度由270℃降低至250℃,钝化时间由72 h延长至1周,有利于增加副反应活性中心的积炭量。  相似文献   

7.
采用免焙烧法制备催化剂前驱体,用H_2等离子体还原制备免焙烧的MoP(NC-MoP)催化剂和Ce改性的MoP(Ce-MoP(n))催化剂。对制备的催化剂进行XRD和N_2物理吸附表征,并用质量分数为0.8%的二苯并噻吩/十氢萘(DBT)溶液来考察催化剂的加氢脱硫(HDS)反应活性。与焙烧的MoP(C-MoP)催化剂相比,NC-MoP具有较小的颗粒尺寸和较大的比表面积,从而具有较高的DBT加氢脱硫反应活性;引入Ce后,催化剂的颗粒尺寸降低,比表面积增加,反应活性提高;Ce含量较低时,助催化效果随着Ce含量的增加而增强,Ce-MoP(0.3)具有最高的反应活性。  相似文献   

8.
采用共浸渍法制备了Mg,Ca,Al,Ga改性的Ni-Cu/β分子筛催化剂,采用XRD和NH_3-TPD对催化剂进行表征,并用于由合成气制备液化石油气(LPG)的反应,研究了金属元素改性对合成气合成LPG反应的影响。实验结果表明,Ca和Ga的引入可降低CO_2选择性、提高LPG选择性;二者协同作用时,催化剂的性能更好,适宜的Ca含量为0.25%(w)、Ga含量为0.10%(w),此时CO_2选择性由23.98%降至10.26%、LPG选择性由75.86%提高至78.52%。对Ca含量为0.25%(w)、Ga含量为0.1%(w)的Ni-Cu-Ca-Ga/β催化剂进行稳定性评价,反应100 h后催化剂仍表现出良好的稳定性及LPG选择性。  相似文献   

9.
以柠檬酸(CA)为络合剂,采用溶胶-凝胶法制备了K/Fe/β-Mo2C催化剂前驱体,将该前驱体在Ar气氛下程序升温碳化制备了纳米尺寸的K/Fe/β-Mo2C催化剂。考察了K含量对K/Fe/β-Mo2C催化剂织构及CO加氢反应性能的影响。结果表明,K助剂的引入促进了催化剂中β-Mo2C晶粒的长大,适量的K提高了催化剂的比表面积,提高了催化剂的活性和低碳醇选择性,但是过量K助剂的引入在催化剂表面形成了惰性的K2MoO4和K2Mo2O7,覆盖了部分活性中心,降低了催化剂的活性和低碳醇选择性。  相似文献   

10.
采用等体积浸渍法制备了不同K2O、Li2O含量的Pd-Au/Al2O3催化剂,采用低温氮吸附法、吡啶吸附红外光谱、程序升温还原(H2-TPR)等方法进行了表征研究。吡啶吸附红外光谱表征结果表明,催化剂表面只有L酸,无B酸,K2O改性比Li2O改性催化剂的表面酸性弱。H2-TPR表征结果表明,催化剂表面形成了Pd-Au二元合金,加入碱金属改性后,催化剂的还原峰向高温方向移动。以异戊二烯的模型化合物为原料评价了自制的改性Pd-Au/Al2O3催化剂的选择加氢性能,结果表明:催化剂经过Li2O改性后,异戊二烯的转化率和单烯烃选择性提高,而用K2O改性时,异戊二烯的转化率降低,单烯烃选择性提高;采用K2O质量分数为1.2%的催化剂,在反应温度为70℃时异戊二烯的转化率为90.0%,单烯烃的选择性为86.0%。  相似文献   

11.
以介孔分子筛SBA-15为载体,负载KNO,后经过焙烧,制得K2O/SBA-15固体碱催化剂。对K2O/SBA-15催化丙烯酸甲酯与正丁醇合成丙烯酸正丁酯的酯交换反应进行了研究。结果表明,当K2O负载量为2%,反应时间为6h,反应温度为180℃,n(正丁醇)/n(丙烯酸甲酯)为4,m(催化剂)/m,(原料)为0.1时,丙烯酸甲酯的转化率最大,为64.22%。  相似文献   

12.
仲丁醇脱氢制甲乙酮催化剂的研究   总被引:5,自引:1,他引:4  
采用BC-DH2004催化剂进行仲丁醇脱氢合成甲乙酮的研究。考察不同催化体系的热稳定性,并考察催化剂的堆密度、助剂含量和仲丁醇的原料组成对BC-DH2004催化剂性能的影响及BC-DH2004催化剂多周期运行的稳定性。实验结果表明,BC-DH2004催化剂的热稳定性好;在反应温度250~270℃、液态空速4h-1的条件下,仲丁醇脱氢产物中甲乙酮的质量分数大于80%,碳八酮的质量分数小于3%;具有适当的堆密度和助剂含量的催化剂性能较好;经再生后催化剂的性能稳定,操作周期大于1 250h。  相似文献   

13.
在完全液相法中分别采用常压、直接高压、先常压后高压的热处理方式制备了CuZnAl催化剂。利用X射线粉末衍射、氮吸附、X射线光电子能谱和程序升温还原方法对催化剂进行了表征,并采用固定床反应器考察了催化剂对CO加氢反应的催化性能。结果表明,热处理压力对所制备的CuZnAl催化剂体相结构和表面结构有显著影响。与常压热处理相比,经过高压热处理后的CuZnAl催化剂各物相晶型较为完整,晶粒长大,比表面积和孔容提高,但高价Cu物种转化成了单质Cu或尖晶石;先常压后高压热处理制备的CuZnAl催化剂能在一定程度上抑制完全液相法中高价Cu物种的还原。经高压热处理制得的CuZnAl催化剂催化CO加氢的CO转化率低于常压热处理的催化剂的,但DME选择性有所提高。  相似文献   

14.
分别以H2O,H3BO3,C6H8O7,NH3.H2O为溶剂,采用离子交换法制备了铜水泥催化剂,并在固定床上考察了催化剂催化甲醇裂解的性能。实验结果表明,以H2O代替NH3.H2O制得的铜水泥催化剂性能优越,实现了催化剂制备的环保高效。与商用的CuZnAl甲醇裂解催化剂相比,铜水泥催化剂具有较高催化活性和选择性,在常压、300℃、重时空速3.39h-1的条件下,铜水泥催化剂的比活性(甲醇转化率与铜负载量的比值)和CO+H2的选择性分别为2.44和95.9%,CuZnAl催化剂分别为0.64和89.2%;铜水泥催化剂的抗压强度大于45N,而CuZnAl催化剂的抗压强度为20N。铜水泥催化剂具有机械强度高、活性高、CO+H2选择性高的特点,基本满足了随车制氢的要求。XRD,SEM,DTG-DTA,FTIR,H2-TPR表征结果显示,铜水泥催化剂制备过程中形成的CaCO3具有稳定铜物种的作用,有助于保持催化剂的高温活性。  相似文献   

15.
对γ-Al2O3进行了S2O82-、Ni2+复合离子改性,将改性后的γ-Al2O3用作合成气直接制二甲醚催化剂的甲醇脱水组分,制备出了CuZnAl/γ-Al2O3-S2O82--Ni2+双功能催化剂。在连续固定床高压反应器中,研究了改性条件对催化剂性能的影响。当(NH4)2S2O8溶液浓度15%、Ni(NO3)2溶液浓度1%,改性浸渍时间3h、浸渍温度80℃、焙烧温度450℃时,CuZnAl/γ-Al2O3-S2O82--Ni2+催化剂的催化效果最好,在260℃、3.2Mpa、1500h-1空速和n(H2)/n(CO)=2的反应条件下,CO转化率为80%,二甲醚选择性为52%。改性后的γ-Al2O3作为双功能催化剂中的甲醇脱水组分好于改性前。  相似文献   

16.
将完全液相法与热解法结合制备了CuZnAl催化剂,并在固定床反应器上进行了CO加氢制备低碳醇活性评价,结合XRD、XPS、O2-TPO-MS、H2-TPR、N2吸/脱附以及NH;-TPD-MS表征手段,考察了热解温度对催化剂结构和性能的影响。结果表明,随着热解温度的升高,Cu-Zn-Al间相互作用增强,Cu的电子向Zn和Al物种转移,Cu氧化程度增大;催化剂表面碳含量降低,弱酸中心数量减少,比表面积先升高后降低,CO转化率则与比表面积呈现顺变关系。700℃热解所制备催化剂上CO转化率最高,达到23.6%;总醇选择性则随热解温度的升高而下降,350℃热解所制备催化剂上总醇选择性最高,为41.9%。  相似文献   

17.
分别以碳酸钠、碳酸氢钠、柠檬酸和草酸作为沉淀剂,采用共沉淀法制备CuZnAl催化剂;通过XRD、H2-TPR、N2吸附-脱附和NH3/CO2-TPD-MS等手段对CuZnAl催化剂进行表征;并探究了其催化CO加氢合成C2+醇(C2+OH)的性能。结果表明,沉淀剂的改变影响催化剂上Cu0的分散性、CuO的还原性以及催化剂的织构性质和其表面酸、碱性,从而显著影响其催化性能。以碳酸钠为沉淀剂制备的CuZnAl催化剂具有较大的比表面积和孔体积,弱碱量和中强碱量的比例适宜;同时,ZnO微晶的形成促进了CuO的还原,提高了Cu0的分散性,因而使催化剂表现出最佳的催化性能,CO转化率达21.24%,C2+OH在醇产物中的占比最高,为18.32%。  相似文献   

18.
CuZnAl催化剂在合成气催化转化中被广泛应用。以异丙醇铝为铝源,分别以水、乙醇或乙二醇作为硝酸铜和硝酸锌的溶剂,采用完全液相法制备CuZnAl催化剂,考察了铜锌盐的溶剂对催化剂用于浆态床CO加氢性能的影响,并用XRD、H2 TPR、XPS、NH3 TPD和N2物理吸附等手段对催化剂进行表征。结果表明,溶解铜锌盐的溶剂不同,会造成催化剂中Cu和ZnO的分散度、Cu物种的还原性能、表面元素组成以及表面酸量存在差异,从而影响其催化性能。以乙二醇为溶剂制备的CuZnAl催化剂中,Cu的晶粒较大而ZnO的分散度最好,表面Cu含量最高,Cu组分与Zn和Al组分间有较强的相互作用,且有较多的表面弱酸量及较大的孔容,其催化CO加氢产物中二甲醚和烃的选择性较高,且有一定量C2+OH的生成,C2+OH在总醇中占比达2711%,但CO转化率较低。以水和乙醇为溶剂制备的CuZnAl催化剂,CO转化率较高,但醇产物以甲醇为主。  相似文献   

19.
介绍甲乙酮生产、使用情况,用改性活性炭吸附甲乙酮副产氢气中的仲丁醇和甲乙酮。结果表明:改性活性炭吸附剂可以有效的净化甲乙酮副产氢气中的仲丁醇和甲乙酮;改性活性炭吸附剂吸附温度为常温,压力0.01MPa,空速不大于120 h-1;改性活性炭吸附剂具有良好的再生性能;吸附装置工艺流程简单,具有良好的工业化应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号