首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李德华  苏文晋  朱晓玲 《物理学报》2012,61(2):23103-023103
采用平面波赝势密度泛函理论方法对0—60 GPa静水压下BC5 六角晶系P3m1和四方晶系I4m2结构的平衡态晶格常数、弹性常数、各向异性以及泊松比与Cauchy扰动进行了研究. 研究结果表明, BC5的两种结构在高压下是稳定的, 且不可压缩性随着压强的增加而增大. 另外, 对其电子结构也进行了计算, 计算结果表明, BC5存在一个较宽的带隙, 两种原子间有较强的共价杂化, 材料的性质主要由B的2p1和C的2p2态电子共同决定. 压强对材料带隙和费米能级附近的态密度几乎没有影响, 只引起微小的漂移, 可推断其很好的高压稳定性.  相似文献   

2.
The large structural stability regime of LaAl2 and LaAl3 as a function of pressure is investigated by the band structure calculations using the FP-LAPW method. An earlier experimental study has revealed that there is no structural phase transition at ∼35 and ∼30 GPa for LaAl2 and LaAl3, respectively. Our calculations indicate that in the density of states curve of LaAl2, the Fermi level (EF) lies in a slope between bonding maxima and antibonding minima. At high pressures the EF moves slightly towards the valley, but this shifting does not affect its structural stability. In LaAl3, the EF falls in a flat region in the density of states and does not move even up to 33 GPa. The band dispersion curves for both the compounds show movement of bands under the influence of pressure. Some of them cross the Fermi level leading to so called Lifshitz transitions. However, it is seen that these electronic changes do not manifest into any volume anomaly in LaAl3 under pressure. Our study clearly shows that the density of states behavior for LaAl2 and LaAl3 satisfies the Yamashita-Asano criterion for structural stability. The theoretical equations of state, bulk modulus and its pressure derivative values are compared with the experimental values.  相似文献   

3.
High pressure studies of solid methane are performed using both classical simulated annealing and first-principles methods. A series of simulated annealing and geometry optimization reveal a monoclinic P21/b structure with the unit cell containing four methane molecules. The phonon dispersion curves and vibrational density of states indicate that this structure is stable in the pressure range 10-90 GPa. The electronic band structure and density of states show that this structure has not metalized until 90 GPa.  相似文献   

4.
Three of the five structures obtained from the evolutionary algorithm based structure search of Ruthenium Carbide systems in the stoichiometries RuC, Ru2C and Ru3C are relaxed at different pressures in the range 0–200 GPa and the pressure-induced variation of their structural, elastic, dynamical, electronic and thermodynamic properties as well as hardness is investigated in detail. No structural transition is present for these systems in this pressure range. RuC–Zinc blende is mechanically and dynamically unstable close to 100 GPa. RuC-Rhombohedral and Ru3C-Hexagonal retain mechanical and dynamical stability up to 200 GPa. For all three systems the electronic bands and density of states spread out with pressure and the band gap increases with pressure for the semiconducting RuC–Zinc blende. From the computed IR spectrum of RuC–Zinc blende at 50 GPa it is noted that the IR frequency increases with pressure. Using a semi-empirical model for hardness it is estimated that hardness of all three systems consistently increases with pressure. The hardness of RuC–Zinc blende increases towards the superhard regime up to the limiting pressure of its mechanical stability while that of RuC-Rhombohedral becomes 30 GPa at the pressure of 150 GPa.  相似文献   

5.
由于铁电材料在科学研究领域的重要应用,功能铁电材料的设计和机理研究一直是国内外的研究热点。材料的性能离不开结构研究,为了更好的认识和理解一种典型铁电材料-硫酸氢铵的结构和相行为,研究了17GPa压强下硫酸氢铵的高压拉曼光谱。在压力作用下,绝大多数的拉曼谱线向高波数方向移动,并且有两个特征拉曼谱带的强度发生很大的变化(1 018和3 183cm~(-1)),表明硫酸盐与铵离子正四面体的电子云密度发生重构。根据频移-压强曲线关系,得出了硫酸氢铵在6和10.5GPa附近分别存在一阶相变。根据高压下S=O伸缩振动谱带的变化规律,发现了不同相区间氢键的相反作用规律。为AHSO_4系列铁电材料压力作用下结构变化规律提供一定的研究基础。  相似文献   

6.
成泰民  张龙燕  孙腾  张新欣  朱林  李林 《物理学报》2015,64(14):146301-146301
有序晶态Fe3Pt因瓦合金处于一种特殊的磁临界状态, 这种磁临界状态下体系的晶格动力学稳定性对压力极为敏感. 基于密度泛函理论的第一性原理的投影缀加平面波方法研究了不同晶态合金的Fe3Pt的焓和磁性随压力的变化规律, 结果表明, 在压力小于18.54 GPa下, P4/mbm结构是热力学稳定的相. Pm3m结构、I4/mmm结构、DO22结构的Fe3Pt在铁磁性坍塌临界压力附近体系的总磁矩急剧下降并具有振荡现象, 且I4/mmm结构和DO22结构的Fe3Pt 在临界压力附近出现了Fe1原子磁矩反转现象. 在43 GPa下, DO22结构的Fe3Pt出现了亚铁磁微观磁特性突然增强且伴随着体积突然增大的现象. 在高压下, 对Pm3m结构Fe3Pt的晶格动力学计算表明, 压力小于26.95 GPa的铁磁态下体系的自发磁化诱导了体系横向声学支声子软化, 表明体系中存在很强的自发体积磁致伸缩. 特别是在铁磁性坍塌临界压力41.9 GPa至磁性完全消失的57.25 GPa压力区间, 晶格动力学稳定性对压力更加敏感. 压力大于57.25 GPa时, 压力诱导了体系声子谱的稳定.  相似文献   

7.
In this study, first principles calculation results of the half-metallic ferromagnetic Heusler compound Co2MnSi are presented. All calculations are based on the spin-polarized generalized gradient approximation (σ-GGA) of the density functional theory and ultrasoft pseudopotentials with plane wave basis. Electronic structure of related compound in cubic L21 structure is investigated up to 95 GPa uniform hydrostatic pressure. The half-metal to metal transition was observed around ~70 GPa together with downward shift of the conduction band minimum (CBM) and a linear increase of direct band gap of minority spins at Γ-point with increasing pressure. The electronic density of states of minority spins at Fermi level, which are mainly due to the cobalt atoms, become remarkable with increasing pressure resulting a sharp decrease in spin polarization ratio. It can be stated that the pressure affects minority spin states rather than that of majority spins and lead to a slight reconstruction of minority spin states which lie below the Fermi level. In particular, energy band gap of minority spin states in equilibrium structure is obviously not destroyed, but the Fermi level is shifted outside the gap.  相似文献   

8.
冯宏剑  刘发民 《中国物理 B》2009,18(4):1574-1577
In this paper the first-principles calculations within local spin density approximation (LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure of phase transition is reached. The critical pressure for the insulator-metal transition (IMT) is found to be about 50 GPa. A pressure induced crossover of high-spin states and low-spin states is observed close to the IMT pressure in R3c structure. The LSDA+U calculations account well for the mechanism of the IMT and crossover of spin states predicted in recent experiment (Ref.[1]).  相似文献   

9.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

10.
In this paper we demonstrate that two independent methods of calculations (DFT based ab initio and semi-empirical crystal field theory) can be used to form a complementary picture of the optical and electronic properties of the doped host and impurity ion. The crystals considered in the present paper are: (i) YAlO3:Ce3+ and (ii) two dominant phases of TiO2—rutile and anatase. As an example, detailed calculations of the band structure and crystal field energy level scheme of YAlO3:Ce3+ are reported. From the analysis of the band structure and density of states, the character of the YAlO3 energetic bands and positions of the Ce impurity energy levels were established. It was also shown how the ab initio methods can be used for calculations of the structural properties of solids under elevated pressure. Taking the two dominant phases of TiO2 as an example, it was demonstrated how the elastic properties can be extracted from the calculated unit cell’s volume at different pressures. Particular attention was paid to the microscopic effects of crystal field, which were evidenced by the pressure-induced changes of the structure and shape of distribution of the Ti 3d electrons density of states. It was demonstrated how the difference in crystal structure of the anatase and rutile phases leads to remarkable difference in microscopic crystal field effects, which was explained by different Ti-O distances in both phases. In addition, the pressure dependence of the band gaps for anatase and rutile was investigated. It was shown that the hydrostatic pressure leads to the band gap narrowing in anatase and band gap widening in rutile, with pressure coefficients +0.00681 eV/GPa for rutile and −0.0088 eV/GPa for anatase.  相似文献   

11.
Hf-C体系的高压结构预测及电子性质第一性原理模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
彭军辉  曾庆丰  谢聪伟  朱开金  谭俊华 《物理学报》2015,64(23):236102-236102
本论文中, 采用晶体结构预测软件USPEX结合第一性原理方法全面地搜索了Hf-C体系在高压下的晶体结构, 预测得到了两种新的化合物及HfC在高压下的相变路径. 压力低于100 GPa 时, 除了常压下的结构HfC, Hf3C2, Hf6C5, 并没有得到新的热力学稳定结构. 在200 GPa时, 预测得到了一种新化合物——Hf2C, 空间群为I4/m; 且HfC的结构发生了相变, 空间群由Fm3m变为C2/m. 在300 GPa时, 预测得到了另一种新化合物——HfC2, 空间群为Immm. 而在400 GPa时, HfC的结构再次发生相变, 空间群为Pnma. 通过能量计算, 得到了Hf-C体系的组分-压力相图: 在压力分别低于15.5 GPa和37.7 GPa时, Hf3C2和Hf6C5是稳定的; 压力分别大于102.5 GPa和215.5 GPa时, Hf2C和HfC2变成稳定化合物; HfC的相变路径为Fm3m→C2/m→Pnma, 相变压力分别为185.5 GPa 和322 GPa. 经结构优化后, 得到了这四种高压新结构的晶体学数据, 如晶格常数、原子位置等, 并分析了其结构特点. 对于Hf-C 体系中的高压热力学稳定结构, 分别计算了其弹性性质和声子谱曲线, 证明是力学稳定和晶格动力学稳定的. 采用第一性原理软件VASP模拟高压结构的能带结构、态密度、电子局域函数和Bader 电荷分析, 发现HfC(C2/m, Pnma结构), Hf2C 和HfC2 中Hf-C 键具有强共价性、弱金属性和离子性, 且C-C 间存在共价作用.  相似文献   

12.
Water under pressure is investigated by first principles molecular dynamics, with a focus on the changes in hydrogen bonding and the oxygen network in the nondissociative regime. At a pressure of 10 GPa and a temperature of 600 K, which is close to the freezing point, no appreciable molecular dissociation is observed in the simulations. However, the structure of water is substantially altered from that at ambient conditions. The liquid exhibits a much larger coordination of oxygen atoms, an essential weakening of hydrogen bonding, and sizable changes in the density of electronic states close to the Fermi level. Our results provide new structural data for direct comparison with future experiments.  相似文献   

13.
Yuan-Yuan Jin 《中国物理 B》2022,31(11):116104-116104
The recent discovery of the novel boron-framework in boron-rich metal borides with complex structures and intriguing features under high pressure has stimulated the search into the unique boron-network in the metal monoborides or boron-deficient metal borides at high pressure. Herein, based on the particle swarm optimization algorithm combined with first-principles calculations, we thoroughly explored the structural evolution and properties of TiB up to 200 GPa. This material undergoes a pressure-induced phase transition of $Pnma$ $\to $ $Cmcm$ $\to $ $Pmmm$. Besides of two known phases $Pnma$ and $Cmcm$, an unexpected orthorhombic $Pmmm$ structure was predicted to be energetically favored in the pressure range of 110.88-200 GPa. Intriguingly, the B covalent network eventually evolved from a one-dimensional zigzag chain in $Pnma$-TiB and $Cmcm$-TiB to a graphene-like B-sheet in $Pmmm$-TiB. On the basis of the microscopic hardness model, the calculated hardness ($H_{\rm v}$) values of $Pnma$ at 1 atm, $Cmcm$ at 100 GPa, and $Pmmm$ at 140 GPa are 36.81 GPa, 25.17 GPa, and 15.36 GPa, respectively. Remarkably, analyses of the density of states, electron localization function and the crystal orbital Hamilton population (COHP) exhibit that the bonding nature in the three TiB structures can be considered as a combination of the B-B and Ti-B covalent interactions. Moreover, the high hardness and excellent mechanical properties of the three TiB polymorphs can be ascribed to the strong B-B and Ti-B covalent bonds.  相似文献   

14.
 利用金刚石对顶砧(DAC)高压装置产生高压,在0~35 GPa压力范围,对石膏(Gypsum,CaSO4·2H2O)晶体进行了高压原位Raman光谱研究。根据高压Raman光谱的实验数据,给出了石膏晶体Raman振动频率与压力的依赖关系;在4.5 GPa附近,在对称性伸缩振动范围,发现新的Raman峰1 012  cm-1出现,这个峰的强度随压力升高逐渐增强,据此断定在4.5 GPa 附近,石膏晶体发生了压力导致的结构相变。  相似文献   

15.
The structure and properties of a 16-atom body-centered cubic lithium cell with an interstitial hydrogen atom are studied using a pseudopotential-plane-wave method within the density functional theory at 0 K and high pressures. The host lattice is dramatically distorted by the introduction of H. Although the hydrogen atom is stable at the tetragonal site in perfect bcc host lattice, it favors the octahedral site formed by six non-equivalent Li atoms after full relaxation of the cell, showing P4/mmm symmetry within the pressures ranging from 0 to 6 GPa. The lattice ratio (a/c) changes irregularly with external pressure at about 3 GPa. The hydrogen band lies in the bottom of the valence band, separated by a gap from the metallic bands, illustrating the electronegativity of hydrogen. High reflectivity in the low frequency area induced by the impurity hydrogen is observed when only interband transitions are taken account of. A dip in reflectivity due to parallel band transitions is observed at ∼0.4 eV. Another dip at ∼4.3 eV appears when external pressure increases over 4 GPa.  相似文献   

16.
An investigation into the structural stability and the electronic properties of LaBi under high pressure was conducted using first-principles calculations based on density functional theory (DFT), in the presence and absence of spin–orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from the NaCl-type (B1) structure to a primitive tetragonal (PT) structure at the transition pressure of 11.2 GPa (without SOC) and 12.9 GPa (with SOC). The chemical bond between La and Bi is mainly ionic. The band structure shows that B1-LaBi is metallic. A pseudogap appears around the Fermi level of the total density of states (DOS) of the B1 phase of LaBi, which may contribute to its stability.  相似文献   

17.
张旭东  姜伟 《中国物理 B》2016,25(2):26301-026301
The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L1_2 structure Al_3Tm and Al_3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al_3Tm and A_3Lu keep their dynamical stabilities in L1_2 structure up to 100 GPa. The elastic properties and Debye temperatures for Al_3Tm and Al_3 Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the threedimensional(3D) curved surface of Young's modulus. The calculated results show that Al_3Tm and Al_3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al_3Tm and Al_3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications.  相似文献   

18.
The electronic structure, elastic constants and lattice dynamics of the B(2) type intermetallic compound LaAg are studied by means of density functional theory calculations with the generalized gradient approximation for exchange and correlation. The calculated equilibrium properties and elastic constants agree well with available experimental data. From the ratio between the bulk and shear moduli, LaAg is found to be ductile, which is unusual for B(2) type intermetallics. The computed band structure shows a dominant contribution from La 5d states near the Fermi level. The phonon dispersion relations, calculated using density functional perturbation theory, are in good agreement with available inelastic neutron scattering data. Under pressure, the phonon dispersions develop imaginary frequencies, starting at around 2.3 GPa, in good accordance with the martensitic instability observed above 3.4 GPa. By structural optimization the high pressure phase is identified as orthorhombic B(19).  相似文献   

19.
20.
采用金刚石压砧高压装置(DAC),对层状钙钛矿结构锰氧化物Ca3Mn2O7的粉末样品进行了高压能散X射线衍射实验。实验结果表明,在0-35GPa压力范围内,Ca3Mn2O7晶体结构发生了两次相变。在1.3GPa左右,由原来的四方相转变为正交相,在9.5GPa左右,又由正交相向新的四方相转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号