首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The issues of impulsive control and synchronization of chaotic Hindmarsh–Rose model are investigated in this paper. Based on impulsive control theory of dynamical systems, some simple yet less conservative criteria ensuring impulsive stabilization and synchronization of the Hindmarsh–Rose models are derived analytically. Furthermore, two numerical results are presented to demonstrate the effectiveness of the proposed control techniques. It is shown that the obtained results should be helpful to understand dynamical mechanism of signal encoding and transduction from information processing of real neuronal activity.  相似文献   

2.
Song Zheng 《Complexity》2016,21(5):131-142
Synchronization and control of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this article, we investigate the problem of impulsive synchronization for the complex‐variable delayed chaotic systems with parameters perturbation and unknown parameters in which the time delay is also included in the impulsive moment. Based on the theories of adaptive control and impulsive control, synchronization schemes are designed to make a class of complex‐variable chaotic delayed systems asymptotically synchronized, and unknown parameters are identified simultaneously in the process of synchronization. Sufficient conditions are derived to synchronize the complex‐variable chaotic systems include delayed impulses. To illustrate the effectiveness of the proposed schemes, several numerical examples are given. © 2014 Wiley Periodicals, Inc. Complexity 21: 131–142, 2016  相似文献   

3.
The present paper investigates the issues of impulsive synchronization seeking in general complex delayed dynamical networks with nonsymmetrical coupling. By establishing the extended Halanay differential inequality on impulsive delayed dynamical systems, some simple yet generic sufficient conditions for global exponential synchronization of the impulsive controlled delayed dynamical networks are derived analytically. Compared with some existing works, the distinctive features of these sufficient conditions indicate two aspects: on the one hand, these sufficient conditions can provide an effective impulsive control scheme to synchronize an arbitrary given delayed dynamical network to a desired synchronization state even if the original given network may be asynchronous itself. On the other hand, the controlled synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy, which reveals the contributions and influences of various nodes in synchronization seeking processes of the dynamical networks. It is shown that impulses play an important role in making the delayed dynamical networks globally exponentially synchronized. Furthermore, the results are applied to a typical nearest-neighbor unidirectional time-delay coupled networks composed of chaotic FHN neuron oscillators, and numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

4.
主要考虑非对称耦合复杂网络的脉冲同步问题.通过构造Lyapunov泛函,设计合适的脉冲控制器,并利用时滞脉冲系统理论,给出了网络脉冲同步新的判别准则.数值模拟表明所得结果是正确的.  相似文献   

5.
Song Zheng 《Complexity》2016,21(Z1):547-556
This paper studies the projective synchronization behavior in a drive‐response dynamical network with coupling time‐varying delay via intermittent impulsive control. Different from the most publications on drive‐response dynamical networks under the general impulsive control, here the impulsive effects can only exist at control windows, not during the whole time. Moreover, intermittent impulsive control does not need the limitation of the upper bound of the impulsive intervals. By utilizing the Lyapunov‐Razumikhin technique, some sufficient conditions for the projective synchronization are derived. Numerical simulations are provided to verify the correctness and effectiveness of the proposed method and results. © 2016 Wiley Periodicals, Inc. Complexity 21: 547–556, 2016  相似文献   

6.
In this paper, the globally exponential synchronization of delayed complex dynamical networks with impulsive and stochastic perturbations is studied. The concept named “average impulsive interval” with “elasticity number” of impulsive sequence is introduced to get a less conservative synchronization criterion. By comparing with existing results, in which maximum or minimum of impulsive intervals are used to derive the synchronization criterion, the proposed synchronization criterion increases (or decreases) the impulse distances, which leads to the reduction of the control cost (or enhance the robustness of anti-interference) as the most important characteristic of impulsive synchronization techniques. It is discovered in our criterion that “elasticity number” has influence on synchronization of delayed complex dynamical networks but has no influence on that of non-delayed complex dynamical networks. Numerical simulations including a small-world network coupled with delayed Chua’s circuit are given to show the effectiveness and less conservativeness of the theoretical results.  相似文献   

7.
This paper mainly investigates synchronization of complex dynamical networks (CDNs) with both system delay and coupled delay through distributed delayed impulsive control. Instead of constraining the impulsive weight and impulsive delay one by one, a new concept of average delayed impulsive weight is proposed to obtain more relaxed conditions. Subsequently, based on the impulsive control topology, Lyapunov theory and linear matrix inequality (LMI) design, certain flexible criteria of global exponential synchronization (GES) are given and the corresponding convergence rate is estimated. It is interesting to see that the CDNs can still achieve synchronization under comprehensive conditions though impulsive weights work negatively. Namely, the delays in impulsive control are able to promote synchronization potentially. Finally, simulations are given to show that the distributed delayed impulsive control can not only speeds up the convergence rate for synchronized networks, but also facilitates synchronization for desynchronized networks. In addition, the obtained results can be applied to unmanned craft systems.  相似文献   

8.
This paper is concerned with the global exponential synchronization problem of two identical nonlinear time-delay Lur’e systems via delayed impulsive control. Some novel impulsive synchronization criteria are obtained by introducing a discontinuous Lyapunov function and by using the Lyapunov–Razumikhin technique, which are expressed in forms of linear matrix inequalities. The derived criteria reveal the effects of impulsive input delays and impulsive intervals on the stability of synchronization error systems. Then, sufficient conditions on the existence of a delayed impulsive controller are derived by employing these newly-obtained synchronization criteria. Additionally, some synchronization criteria for two identical time-delay Lur’e systems with impulsive effects are presented by using delayed continuous feedback control. The synchronization criteria via delayed continuous feedback control can deal with the case when the impulsive control strategy fails to synchronize two identical impulsive time-delay Lur’e systems. Three numerical examples are provided to illustrate the efficiency of the obtained results.  相似文献   

9.
This paper is devoted to studying the synchronization control of impulsive dynamical networks. A single impulsive controller is proved to be effective for the stabilization of dynamical networks with impulse-coupling. Some simple and easily verified criteria are given for the stabilization of impulsive dynamical networks under a single impulsive controller and/or a single negative state-feedback control. Moreover, the effects of a single impulsive controller, a single state-feedback controller and an isolated dynamical system on the synchronization process are respectively distilled and explicitly expressed in the derived criteria. The structure of the dynamical network can be directed and weakly connected with a rooted spanning tree. Moreover, the convergence rate of the dynamical network is also explicitly estimated, and there is no requirement on the lower and upper bounds of the impulsive intervals. A numerical example is presented to illustrate the efficiency of the designed controller and the validity of the analytical results.  相似文献   

10.
This paper focuses on the problem of impulsive synchronization of T–S fuzzy systems. A new synchronization criterion is derived for T–S fuzzy systems by utilizing the concept of average impulsive interval. The proposed impulsive control scheme has a simple control structure, and is theoretically and numerically proved to be less conservative than some existing results. The method is also illustrated by applying to Lorenz system, Rössler’s system as well as permanent magnet synchronous motors system.  相似文献   

11.
In this work, we define the notions of ‘impulsive non‐autonomous dynamical systems’ and ‘impulsive cocycle attractors’. Such notions generalize (we will see that not in the most direct way) the notions of autonomous dynamical systems and impulsive global attractors in the current published literature. We also establish conditions to ensure the existence of an impulsive cocycle attractor for a given impulsive non‐autonomous dynamical system, which are analogous to the continuous case. Moreover, we prove the existence of such attractor for a non‐autonomous 2D Navier–Stokes equation with impulses, using energy estimates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

13.
Synchronization of time-varying dynamical network is investigated via impulsive control. Based on the Lyapunov function method and stability theory of impulsive differential equation, a synchronization criterion with respect to the system parameters and the impulsive gains and intervals is analytically derived. Further, an adaptive strategy is introduced for designing unified impulsive controllers, with a corresponding synchronization criterion derived. In this proposed adaptive control scheme, the impulsive instants adjust themselves to the needed values as time goes on, and an algorithm for determining the impulsive instants is provided and evaluated. The derived theoretical results are illustrated to be effective by several numerical examples.  相似文献   

14.
In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system including chaotic systems. Some new and sufficient conditions on varying impulsive distances are established in order to guarantee the synchronizability of the systems using the synchronization method. In particular, some simple conditions are derived for synchronizing the systems by equal impulsive distances. The boundaries of the stable regions are also estimated. Simulation results show the proposed synchronization method to be effective.  相似文献   

15.
Vector Lyapunov theory has been developed to weaken the hypothesis of standard Lyapunov theory in order to enlarge the class of Lyapunov functions that can be used for analyzing system stability. In this paper, we provide generalizations to the recent extensions of vector Lyapunov theory for continuous-time systems to address stability and control design of impulsive dynamical systems via vector Lyapunov functions. Specifically, we provide a generalized comparison principle involving hybrid comparison dynamics that are dependent on the comparison system states as well as the nonlinear impulsive dynamical system states. Furthermore, we develop stability results for impulsive dynamical systems that involve vector Lyapunov functions and hybrid comparison inequalities. Based on these results, we show that partial stability for state-dependent impulsive dynamical systems can be addressed via vector Lyapunov functions. Furthermore, we extend the recently developed notion of control vector Lyapunov functions to impulsive dynamical systems. Using control vector Lyapunov functions, we construct a universal hybrid decentralized feedback stabilizer for a decentralized affine in the control nonlinear impulsive dynamical system that possesses guaranteed gain and sector margins in each decentralized input channel. These results are then used to develop hybrid decentralized controllers for large-scale impulsive dynamical systems with robustness guarantees against full modeling and input uncertainty.  相似文献   

16.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

17.
Finite-time stability involves dynamical systems whose trajectories converge to a Lyapunov stable equilibrium state in finite time. For continuous-time dynamical systems finite-time convergence implies nonuniqueness of system solutions in reverse time, and hence, such systems possess non-Lipschitzian dynamics. For impulsive dynamical systems, however, it may be possible to reset the system states to an equilibrium state achieving finite-time convergence without requiring non-Lipschitzian system dynamics. In this paper, we develop sufficient conditions for finite-time stability of impulsive dynamical systems using both scalar and vector Lyapunov functions. Furthermore, we design hybrid finite-time stabilizing controllers for impulsive dynamical systems that are robust against full modelling uncertainty. Finally, we present a numerical example for finite-time stabilization of large-scale impulsive dynamical systems.  相似文献   

18.
In this paper, the role of multiplicative noise in attaining complete synchronization on large complex networks of dynamical systems is investigated by theoretical analysis and numerical simulations. Based on the stability theory of stochastic differential equation, we prove that the multiplicative noise plays a positive role in attaining synchronization if the complex networks of dynamical systems are bounded. Moreover, the theoretical result shows that smaller second eigenvalue of coupling matrix is of benefit in attaining complete synchronization. To demonstrate the correctness of theoretical results, the coupled Lorenz systems, Hindmarsh–Rose neuronal systems and Rössler-like systems are performed as numerical examples.  相似文献   

19.
Synchronization behavior of bursting neurons is investigated in a neuronal network ring impulsively coupled, in which each neuron exhibits chaotic bursting behavior. Based on the Lyapunov stability theory and impulsive control theory, sufficient conditions for synchronization of the multiple systems coupled with impulsive variables can be obtained. The neurons become synchronous via suitable impulsive strength and resetting period. Furthermore, the result is obtained that synchronization among neurons is weakened with the increasing of the reset period and the number of neurons. Finally, numerical simulations are provided to show the effectiveness of the theoretical results.© 2014 Wiley Periodicals, Inc. Complexity 21: 29–37, 2015  相似文献   

20.
Based on stability theory of impulsive differential equation and new comparison theory of impulsive differential system, we study the chaos impulsive synchronization of two coupled chaotic systems using the unidirectional linear error feedback scheme. Some generic conditions of chaos impulsive synchronization of two coupled chaotic systems are derived, and to apply the conditions to typical chaotic system––the original Chua’s circuit. The example illustrates the effectiveness of the proposed result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号