首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
利用热风干燥实验装置并采用130℃、150℃、170℃的风温及2m/s、3m/s的风速对碳化硅超细粉球团的干燥特性及干燥模型进行研究。结果表明:碳化硅超细粉球团的干燥过程分为三个阶段,即升速、恒速和降速阶段,其中升速阶段的干燥时间较短约为20~30min,恒速阶段的干燥时间约为50~80min,降速阶段的干燥时间约为180~210min;在碳化硅超细粉球团干燥的恒速阶段,干燥速率由高到低的顺序为:170℃150℃130℃,在降速阶段,风温170℃时干燥速率下降最快;当风速高于2m/s时,碳化硅超细粉球团的干燥速率变化不大。通过对在不同温度和不同风速条件下的碳化硅超细粉球团干燥的实验数据与8个常用的干燥模型进行拟合分析,发现修正Page模型(Ⅱ)干燥模型拟合度最好,可以较好地反映出碳化硅超细粉球团在不同温度和不同风速下的干燥特性。  相似文献   

2.
通过在不同干燥温度(140,160,180℃)、不同风速(0.4,0.8,1.2 m/s)下对生物型煤进行了干燥特性实验,并对其瞬时单位能耗进行了计算和分析,结果表明:生物质型煤干燥过程中,单位能耗曲线分为3个阶段:下降阶段、恒定阶段和上升阶段;当干燥速率处在升速阶段时,单位能耗随干燥温度和风速的提高下降迅速;当干燥速率处在恒速阶段时,单位能耗随干燥温度和风速的提高而降低;当干燥速率处在降速阶段时,单位能耗随干燥温度和风速的提高而快速上升。基于干燥特性数学模型——Sabbet方程,得到了生物质型煤干燥时瞬时单位能耗的预测模型,其可以有效地反映出生物质型煤在干燥过程中单位能耗瞬态变化,为生产和工艺改进提供指导。  相似文献   

3.
为提高干燥效率、优化干燥效果,采用以含油污泥为黏结剂,与粉煤掺混干燥制备型煤的方式对含油污泥进行资源化处理。研究了掺煤量、干燥风速、干燥温度和型煤粒径对干燥过程的影响,并得到含水率和干燥速率随时间变化曲线。结果表明,以含油污泥为黏结剂制型煤的干燥过程可分为三个阶段:升速阶段、等速阶段和降速阶段。掺煤量主要影响降速阶段,风速主要影响升速阶段,温度主要影响升速阶段和等速阶段,粒径主要影响降速阶段。掺煤量越大、风速越大、温度越高、粒径越小,则干燥速率就越大。试验筛选出最佳干燥条件:掺煤量为65%、风速为2.75m/s、温度为105℃、粒径为10mm。对最佳干燥条件下的干燥过程进行干燥动力学模型拟合,求解干燥方程,得出Page(Ⅱ)模型相关系数平方为0.991时,拟合效果较好,能够反应其干燥特性。  相似文献   

4.
通过在实验室洞道式干燥器里对胡萝卜切片的干燥实验,比较了热风温度、干燥风速、物料片的厚度与形状对胡萝卜干燥过程影响,综合实验数据拟合胡萝卜片热风干燥曲线、干燥速率曲线分析,得到胡萝卜干燥效率较佳的干燥条件是热风温度为70℃,干燥风速为110.3m3/h(或0.946m/s),切片厚度为2mm。随着温度和风速的增加,干燥速率增加,恒速段干燥时间变短。实验分析结果对工业生产中干燥工序如何选用设备、设定操作要求具有指导意义。  相似文献   

5.
为了给柴胡根采收后的干燥提供最佳参数,本文用二次通用旋转组合设计方法进行了回归试验,研究了干燥温度、风速对干燥时间和柴胡皂苷损失率的影响。结果表明,使干燥时间最短的最佳参数组合为:干燥温度为70℃,风速为0.6m/s,即温度取最高,风速取最大;使皂苷损失率最小的最佳参数组合为:干燥温度为58.5℃,风速为0.44m/s;使2个指标都较好的最佳参数组合为:干燥温度为57.9℃,风速为0.48m/s;在干燥温度为42~65℃、风速为0.24~0.6m/s的范围内,皂苷损失率都较小。  相似文献   

6.
《化学工程》2017,(2):26-32
以柳树河油页岩为原料,分别在100℃热风温度和不同的微波功率的干燥条件下进行试验;用Weibull分布函数对油页岩的干燥曲线进行拟合分析,结合尺度参数估算水分有效扩散系数。结果表明:加速干燥阶段脱除的是油页岩颗粒的表面水;前期存在预热过程,温度升高,水分析出很少;随后干燥速率显著增大。恒速阶段析出的也是表面水,受物理脱附作用的影响;功率越大,恒速段时间越短。降速第一阶段主要是大孔隙中水分的脱除,降速第二阶段主要是中孔和微孔中水分的汽化。临界水分比随功率的增加而升高。Weibull分布函数准确模拟了油页岩微波干燥曲线;尺度参数α值随功率增加而减小,功率大于550 W后减小幅度降低;微波干燥的形状参数β1,即升速段出现在干燥前期;估算的水分有效扩散系数随功率增加而增大。微波干燥和热风干燥时相比,油页岩颗粒形态并没有发生显著变化。  相似文献   

7.
朱桂华  洪泽玉  杜雅明  李忠锴 《辽宁化工》2023,(10):1409-1413+1417
为优化盐泥颗粒干燥设备及结构参数,搭建热风干燥实验装置对盐泥颗粒进行热风干燥实验,研究不同风温、风速和堆积厚度对盐泥颗粒热风干燥特性的影响。对不同条件下的干燥特性曲线,通过比较决定系数R2、卡方x2和标准误差ESME等指标,评价5种常用干燥动力学模型对干燥曲线的拟合结果。结果表明:Midilli模型可以预测盐泥颗粒热风干燥过程水分的变化规律,模型预测的干燥曲线与实验干燥曲线有较高的拟合度。盐泥颗粒热风干燥过程中干燥速率逐渐下降,热风干燥特性与风温和堆积厚度密切相关。当温度从50℃增加到80℃时,有效水分扩散系数由2.038 39×10-9 m2·s-1增加到8.137 643×10-9 m2·s-1。  相似文献   

8.
利用热风干燥实验装置对内蒙古某褐煤进行不同温度、不同风速、不同粒度的干燥特性研究。结果表明:降低褐煤的粒度可有效缩短干燥时间;热风风速对褐煤的干燥速率影响很小,干燥适宜温度为150~165℃,在此温度区间内干燥时间较理想,进一步提高风温虽然有助于提高干燥效率,但有发生自燃的危险。  相似文献   

9.
城市污泥与木屑混合薄层干燥实验及动力学分析   总被引:1,自引:0,他引:1  
角度研究了比,添加木通过对纯污泥和添加木屑的污泥进行薄层干燥对比实验,分别从混合比例、薄层厚度、干燥温度、风速木屑添加对污泥干燥特性的影响,并引入薄层模型对其干燥过程进行模拟。结果表明:与纯污泥干燥相屑后污泥干燥速率明显加快,且木屑添加比例越大、薄层越薄、干燥温度越高干燥速率越快,风速对干燥速率的影响不大;Wang—singh模型能很好的描述两种污泥薄层干燥,利用费克第二扩散定律导出的无限平板公式求出纯污泥和添加木屑的污泥在温度120℃~170℃时的有效扩散系数分别为6.13×10-6m/s~1.11×10-5m/s、1.07×10-5m/s~1.67×10-5m/s;由阿伦尼乌斯方程分别求得活化能为Es=16.67kJ/mol、Es=12.97kJ/mol。  相似文献   

10.
采用静态法研究了明胶的平衡含湿质量分数,得到了20℃下吸湿和解吸等温线,结果表明,当空气相对湿度在16%—39%,存在吸湿滞后现象。在对流干燥实验台上进行了明胶干燥特性的实验,以不同厚度的明胶块为实验对象研究了热风温度、风速、湿度对干燥过程的影响。实验结果表明:明胶的干燥过程只有降速阶段,提高热风温度、加大风速均可以在前期提高干燥速率,但在干燥后期干燥速率反而降低;明胶块中心温度受胶块厚度、热风温度影响较大,而在实验范围内空气相对湿度的变化对明胶中心温度影响甚微;明胶的相对含湿质量分数随时间呈指数规律下降,提高风温、加大风速后明胶含湿质量分数在开始阶段下降较快,但最终含湿质量分数反而偏高。  相似文献   

11.
热泵干燥怀山药片的工艺研究   总被引:1,自引:0,他引:1  
以提高怀山药干燥效率和产品品质为目标,本文利用热泵干燥方法,研究了热泵温度,风速,怀山药切片厚度对干燥曲线,L值,以及干制品复水率的影响。试验表明,热泵温度,风速及切片厚度都对怀山药片的干燥速率有显著影响。怀山药片热泵干燥的最佳工艺参数为:热泵温度40℃,风速1.0m/s,切片厚度5mm,干燥后怀山药片的L值和复水率分别为82.07和85.08%。  相似文献   

12.
为提高空气重介质流化床对入料煤水分的适应性,以热气代替常温空气改善流化床对褐煤的分选效果。采用可能偏差Ep为评价指标,研究了热态空气重介质流化床的干燥温度、干燥时间和风量对褐煤分选效果的影响。结果表明:干燥温度为30~50℃时,干燥温度越高,Ep越低;干燥时间为1~5 min时,干燥时间越长,Ep越低,超过3 min后,Ep降低缓慢;风量为8~12 m3/h时,风量增大,Ep先降低后升高。煤样表面水分越高,干燥温度、干燥时间和风量变化对Ep影响越显著。表面水分1%的褐煤,干燥温度50℃、干燥时间5 min、风量10 m3/h时,褐煤分选效果最好,Ep可达到0.022g/cm3。实验证明热态空气重介质流化床可用于分选潮湿褐煤。  相似文献   

13.
800kt/a硫磺制酸装置风机塔后布置改塔前布置的生产实践   总被引:1,自引:1,他引:0  
富瑞分公司800kt/a硫磺制酸装置风机塔后布置流程存在风量不足问题,致使焚硫炉的操作温度高达1180℃,装置生产负荷仅维持在98.58%左右。风机塔后布置改塔前布置后,风量提高21%,生产能力提高9.16%,焚硫炉操作温度降低到1056℃,吨酸中压蒸汽发电量提高了4.7kW·h;同时减少了风机和汽轮机轴的振动、避免了干燥塔酸泥对风机叶片、进气室的腐蚀。  相似文献   

14.
《Drying Technology》2007,25(12):1949-1958
A mathematical model for through drying of paper at constant pressure drop was developed. The model is based on physical properties; hence, basis weight, pressure drop, drying air temperature, pore size distribution, initial gas fraction, and tortuosity are important input parameters to the model. The model was solved for different combinations of the variables basis weight, drying air temperature, and pressure drop corresponding to industrial conditions and the results were compared with data from bench-scale experiments. The simulations show that the drying rate curve is very sensitive to the air flow rate and that correctly modeling the correlation between pressure drop and air flow rate is the most important factor for a successful model for through drying. The model was tuned by adjusting the parameters initial gas fraction and tortuosity in order to give the best possible fit to experimental data. For a given basis weight and pressure drop, different drying air temperatures resulted in relatively constant values of the fitted parameters. This means that the model can well predict the effects of changes in drying air temperature based on a tuning of the model performed at the same basis weight and pressure drop. However, for a given basis weight, an increase in pressure drop yielded fitted parameters that were somewhat different; i.e., a lower initial gas fraction and a higher tortuosity, a change that increases the resistance to air flow. This implies that the correlation between pressure drop and air flow rate in the model does not quite capture the nonlinear relationship shown by the experiments.  相似文献   

15.
A mathematical model for through drying of paper at constant pressure drop was developed. The model is based on physical properties; hence, basis weight, pressure drop, drying air temperature, pore size distribution, initial gas fraction, and tortuosity are important input parameters to the model. The model was solved for different combinations of the variables basis weight, drying air temperature, and pressure drop corresponding to industrial conditions and the results were compared with data from bench-scale experiments. The simulations show that the drying rate curve is very sensitive to the air flow rate and that correctly modeling the correlation between pressure drop and air flow rate is the most important factor for a successful model for through drying. The model was tuned by adjusting the parameters initial gas fraction and tortuosity in order to give the best possible fit to experimental data. For a given basis weight and pressure drop, different drying air temperatures resulted in relatively constant values of the fitted parameters. This means that the model can well predict the effects of changes in drying air temperature based on a tuning of the model performed at the same basis weight and pressure drop. However, for a given basis weight, an increase in pressure drop yielded fitted parameters that were somewhat different; i.e., a lower initial gas fraction and a higher tortuosity, a change that increases the resistance to air flow. This implies that the correlation between pressure drop and air flow rate in the model does not quite capture the nonlinear relationship shown by the experiments.  相似文献   

16.
Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

17.
通过单因素实验和正交实验讨论了热风温度、干燥时间和试样尺寸对市政污泥热风干燥的综合影响。实验结果表明:热风温度为140—180℃时,干燥时间为20—40min,热风温度和试样尺寸对污泥热风干燥都有显著的影响,干燥时间的影响不明显。  相似文献   

18.
A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 -0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.  相似文献   

19.
Dehydration by a forced convection process is one potential method to add value to low-grade asparagus for marketing purposes. The objectives of this study were to determine the optimum drying temperature, air velocity, and predrying blanching treatment and study the effects of those parameters on the drying curves for low-grade asparagus and the efficiency of the drying process. The ranges of investigation were 60 to 93°C and 0.14 to 0.44 m/s for drying temperature and air velocity, respectively. Drying at 51 °C and 0.30 m/s yielded product with an optimum quality, and drying at 79° C and 0.18 m/s yielded the optimum process efficiency of 17.9%. Drying temperature, air velocity, and predrying blanching treatment all affected the rate of drying in the constant-rate drying period and the length of the constant-rate drying period. In the falling-rate period, all of the process parameters studied had some effect on the shape of the drying curve.  相似文献   

20.
In this study, the effect of air velocity in dehumidification drying environment on one-component waterborne wood top coating drying process is analyzed by drying time and moisture content and surface temperature of coating, in which air temperature is 35°C and relative humidity is 50%, and the air velocity is the only change parameter, varying from 0.2 to 1.2?m/s. It is found that drying time of top coating shortens and moisture content of top coating decreases with increasing air velocity. Surface drying time is about 15?min, hard drying time 21?min, and sanded drying time 37?min. To accelerate the drying speed, the air velocity is increased to more than 0.4?m/s. Moisture content of top coating is 58.2% during surface drying, 31.4% during hard drying, and 21.9% during sanded drying time. An infrared thermometer is used to measure the surface temperature of coating. Surface temperature of top coating is 30.0°C when it is dried to the surface drying degree, 33.5°C when the top coating is dried to the hard drying degree, and 34.6°C when the top coating is dried to the sanded drying degree. The drying degree of coating can be judged from the drying time and surface temperature and moisture content of coating. The drying degree of top coating is better when surface temperature is higher and the moisture content is lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号