首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we examine a half‐duplex cooperative multiple‐input multiple‐output non‐orthogonal multiple access system with imperfect channel state information (CSI) and successive interference cancelation. The base station (BS) and mobile users with multi‐antenna communicate by the assistance of a CSI based or fixed gain amplify‐and‐forward (AF) relay with a single antenna. The diversity schemes, transmit antenna selection, and maximal ratio combining are applied at the BS and mobile users, respectively. We study the system performance in terms of outage probability (OP) and ergodic sum‐rate. Accordingly, the exact OP expressions are first derived jointly for the CSI based and fixed gain AF relay cases in Nakagami‐m fading channels. Next, the corresponding lower and upper bound expressions of the OP are obtained. The high signal‐to‐noise ratio analyses are also carried out to demonstrate the error floor value resulted in the practical case and achievable diversity order and array gain in the ideal case. Moreover, the lower and upper bounds of the ergodic sum‐rate expressions are derived together for the CSI based and fixed gain AF relay cases. Finally, the Monte‐Carlo simulations are used to verify the correctness of the analytical results.  相似文献   

2.
In this paper, we derive a moment generating function (MGF) for dual‐hop (DH) amplify‐and‐forward (AF) relaying networks, in which all nodes have an arbitrary number of antennas, with orthogonal space‐time block code (OSTBC) transmissions over Rayleigh fading channels. We present an exact error rate expression based on the derived MGF and another analytical approach to derive achievable performance bounds as closed‐forms of symbol error rate, outage probability, and normalized channel capacity. Furthermore, we derive the asymptotic behavior of symbol error rate and outage probability. From this asymptotic behavior, it is shown that the diversity order and its dependence on antenna configurations can be explicitly determined. Simulation results are also presented to verify their accuracy by comparing with numerical results and to provide an insight to the relationship between relaying networks' antenna configuration and diversity order. It is confirmed that the transmit antenna gain of the source node and the receive antenna gain of the relay node can be obtained only when the relay is close to the destination, and then, the transmit antenna gain of the relay node and the receive antenna gain of the destination node can be obtained only when the relay is close to the source.  相似文献   

3.
In this study, we investigate a new and practical model, ultra‐wideband Slepian–Wolf multiple‐access relay channel (UWB‐SW‐MARC) with correlated noises at the relay and receiver, which includes two important models, that is, UWB‐SW multiple‐access channel with correlated noises and UWB relay channel with correlated noises, as its special cases. We derive a general rate region for UWB‐SW‐MARC and obtain an outer bound for this model and, thereby, prove two certain capacity theorems for two important and different classes of MARC. Also, we analyze outage probability and diversity gain as the practically important concepts in wireless communications and prove that adding a relay to the multiple‐access channel improves the diversity gain. Finally, we evaluate some results numerically and illustrate that the noise correlation coefficient plays an important role in determining the relay position, and show that the channel performance depends on the noise variances. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we analyze the performance of cognitive amplify‐and‐forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi‐antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information‐assisted AF mode, and the signals undergo independent Nakagami‐m fading. In particular, closed‐form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami‐m fading are presented. More importantly, asymptotic closed‐form expressions for the outage probability and SER are derived. These tractable closed‐form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Multi‐hop communications equipped with parallel relay nodes is an emerging network scenario visible in environments with high node density. Conventional interference‐free medium access control (MAC) has little capability in utilizing such parallel relays because it essentially prohibits the existence of co‐channel interference and limits the feasibility of concurrent communications. This paper aims at presenting a cooperative multi‐input multi‐output (MIMO) space division multiple access (SDMA) design that uses each hop's parallel relay nodes to improve multi‐hop throughput performance. Specifically, we use MIMO and SDMA to enable concurrent transmissions (from multiple Tx nodes to single/multiple Rx nodes) and suppress simultaneous links' co‐channel interference. As a joint physical layer (MAC/PHY) solution, our design has multiple MAC modules including load balancing that uniformly splits traffic packets at parallel relay nodes and multi‐hop scheduling taking co‐channel interference into consideration. Meanwhile, our PHY layer modules include distributive channel sounding that exchanges channel information in a decentralized manner and link adaptation module estimating instantaneous link rate per time frame. Simulation results validate that compared with interference‐free MAC or existing Mitigating Interference using Multiple Antennas (MIMA‐MAC), our proposed design can improve end‐to‐end throughput by around 30% to 50%. In addition, we further discuss its application on extended multi‐hop topology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
To effectively reduce the inter‐relay interference (IRI) in two‐path successive relaying, two beamforming schemes are proposed in this paper, utilizing multiple‐antenna relay nodes. Specifically, the two cooperation nodes perform receive combining of the source signal and transmit beamforming of the relayed signal alternately in the successive relaying process. As a result, the IRI between them can be effectively suppressed, thanks to the additional degree of freedom provided by the multiple‐input multiple‐output inter‐relay channel. In the first beamforming scheme, the source‐to‐destination signal‐to‐interference‐plus‐noise ratios (SINR) of separate paths are maximized with approximation, leading to a minimum variance distortionless response beamformer under the high SINR condition. To further improve the system performance, noting that the received SINRs of the two paths have impact on each other due to the mutual coupling of the beamformers, the sum of mean squared errors from these two transmission paths is minimized in the second scheme. Based on this performance criterion, a suboptimal beamformer design is developed numerically through cyclic minimization of the sum of mean squared error cost function. Simulation results demonstrate the superiority of both proposed beamforming schemes in terms of symbol error rate and the achievable system rate, in particular, at high IRI levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Cooperative communication is an ongoing research area which lies on the basic idea of transmission of information from the transmitter to the receiver with the assistance of a virtual array of relay nodes in between, which will eventually provide the spatial diversity. This paper deals with the resource allocation (bandwidth in this case) among multiple users (source‐ destination pairs) in a cooperative communication environment along with the relay selection when there are multiple relay nodes to assist the transmitting nodes to pass on their data signal to respective receivers. A multi‐user, multi‐relay system model is considered here on which Amplify‐and‐Forward relaying scheme is applied. The bandwidth allocation and relay selection are done based on the Stackelberg game according to which transmitting nodes are treated as purchasers and relaying nodes are treated as vendors. By this planned approach, the transmitting nodes can discover the relays at comparatively better positions and can purchase the optimal bandwidth from those helping relays. By this approach, the relays which are competing with each other can increase their own utilities by demanding the optimal prices and the multiple users which are competing with each other can maximize their own utilities by demanding the optimal bandwidths. Distributed relay selection scheme is applied here which does not require precise information of channel state information as opposed to Centralized scheme and it gives comparable results, too.  相似文献   

8.
User cooperation has evolved as a popular coding technique in wireless relay networks (WRNs). Using the neighboring nodes as relays to establish a communication between a source and a destination achieves an increase of the diversity order. The relay nodes can be seen as a distributed multi‐antenna system, which can be exploited for transmit diversity by using distributed space–time block coding (STBC). In this paper, we investigate the bit error rate (BER) of multi‐hop WRNs employing distributed STBC at the relay nodes. We develop the general model of WRNs using distributed STBC, and we derive the pairwise error probability and an approximation of the BER. We examine the impact of several parameters, such as distributed STBC at the relays, the number of relays, the distances between the nodes, and the channel state information available at the receivers, on the BER performance of the multi‐hop WRN. The obtained results provide guidelines about the expected error performance and the design of channel estimation for these networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers a coded cooperative relaying scheme in which all successfully decoded signals from multiple sources are simultaneously forwarded by a multi‐antenna relay to a common multi‐antenna destination to increase bandwidth efficiency. Iterative decoding with hard interference cancellation is used at destination to recover user information. By using orthogonal transmission from sources to avoid their mutual interference, the multi‐antenna relay offers receive space diversity that greatly enhances the decoding performance at the relay. This makes the source‐relay transmission more robust, less sensitive to the source‐relay link SNR, and hence increases the contribution of the relay in cooperative transmission. Simulation results show that the proposed scheme significantly outperforms direct transmission under the same transmit power and bandwidth efficiency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, end‐to‐end performance of transmit antenna selection (TAS) and generalized selection combining (GSC) is studied in a dual‐hop amplify‐and‐forward relay network over flat Rayleigh fading channels. In the system, source and destination equipped with multiple antennas, communicate by the help of single relay equipped with single antenna. Source‐destination link is not available. TAS is used for transmission at the source, and GSC is used for reception at the destination. By considering the relay location and the presence of error in feedback channel from the relay to the source, we derive closed‐form outage probability, moment generating function and moments of end‐to‐end signal‐to‐noise ratio, and closed‐form symbol error probability (SEP) expressions for channel state information (CSI)‐based and fixed relay gains. The diversity order and array gain of the network are obtained for both CSI‐based and fixed relay gains by deriving asymptotical outage probability and SEP expressions. The analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Multicarrier code division multiple access (MC‐CDMA), is a promising multiplexing technique for future communication systems. In this study, we employ the well‐known Walsh‐Hadamard spreading codes for synchronous downlink transmission of MC‐CDMA systems. The spreading codes allow that the frequency diversity to be efficiently exploited. However, multipath propagation may cause orthogonality among users is distorted, and this distortion produces multiple access interference (MAI). To eliminate this effect, we propose a pre‐filtering‐based MC‐CDMA system which uses a pre‐filtering technique at the transmitter and an equal gain combining (EGC) scheme at the receivers, respectively. Our proposed pre‐filtering technique transforms the transmitted signals so that the MAI can be eliminated, and the EGC scheme weights the signals received from all subcarriers so that channel distortions can be compensated. Furthermore, the proposed technique can calculate the transmitted power over all subcarriers to satisfy the required quality of service of each user and archive MAI‐free. In this paper, performance in terms of bit error rate is analyzed; in comparison with the EGC, orthogonal restoring combining, and maximal ratio combining schemes at receiver, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we investigate the performance of a cross‐layer (physical and MAC) design for multiple‐input multiple‐output (MIMO) system that aims at maximizing the throughput of ad hoc networks by selecting the optimum antenna combination. Employing this cross‐layer design is shown to improve the overall network performance relative to the case where no antenna selection (AS) is used. To solve the node blocking problem associated with the IEEE 802.11 medium‐access control (MAC) protocol, the proposed protocol leverage the available degrees of freedom offered by the MIMO system to allow neighboring nodes to simultaneously communicate using the zero‐forcing (ZF) Bell‐labs layered space‐time (BLAST) architecture. Using the cross‐layer design, neighboring nodes share their optimum antenna selection (AS) information through control messages. Given this shared information, nodes set their decisions on the number of selected antennas based on the available spatial channels that guarantees collision‐free transmissions. At the destination node, the ZF receiver is employed to extract the desired user data while treating the data from neighboring users as interference. The performance of the proposed cross‐layer design is examined through simulations, where we show that the network throughput is significantly improved compared to conventional MAC protocols. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, performance of joint transmit and receive antenna selection in each hop of dual hop amplify‐and‐forward relay network is analyzed over flat and asymmetric Nakagami‐m fading channels. In the network, source, relay, and destination are equipped with multiple antennas. By considering relay location, we derive exact closed‐form cumulative distribution function, moment generating function, moments of end‐to‐end signal‐to‐noise ratio and closed form symbol error probability expressions for fixed and channel state information‐based relay gains. We also derive the asymptotical outage probability and symbol error probability expressions to obtain diversity order and array gain of the network. Analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual‐hop relaying where a relay with multiple‐antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade‐off of performance and complexity by comparing the average number of active antennas, path estimations, and signal‐to‐noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The advanced technique of multiple beam antennas is recently considered in wireless networks to improve the system throughput by increasing spatial reuse, reducing collisions, and avoiding co‐channel interference. The usage of multiple beam antennas is similar to the concept of Space Division Multiple Access (SDMA), while each beam can be treated as a data channel. Wireless networks can increase the total throughput and decrease the transmission latency if the physical layer of a mobile node can support multirate capability. Multirate wireless networks incurs the anomaly problem, because low data rate hosts may influence the original performance of high data rate hosts. In this work, each node fits out multiple beam antennas with multirate capability, and a node can either simultaneously transmit or receive multiple data on multiple beams. Observe that the transmitting or receiving operation does not happen at the same time. In this paper, we propose a multiple relay‐based medium access control (MAC) protocol to improve the throughput for low data rate hosts. Our MAC protocol exploits multiple relay nodes and helps the source and the destination to create more than one data channel to significantly reduce the transmission latency. Observe that low data rate links with long‐distance transmission latencies are distributed by multiple relay nodes, hence the anomaly problem can be significantly alleviated. In addition, the ACK synchronization problem is solved to avoid the condition that source nodes do not receive ACKs from destination nodes. An adjustment operation is presented to reduce unnecessary relay nodes during the fragment burst period. Finally, simulation results illustrate that our multiple relay‐based MAC protocol can achieve high throughput and low transmission latency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Cooperative diversity is proposed to combat the detrimental effects of channel fading. In this paper, we investigate the effectiveness of cooperative diversity in interference limited ad hoc networks. The negative effects due to relay blocking on the network throughput are investigated. We show that the relay blocking problem is mainly dependent on the relay selection criterion. To overcome this problem, we propose a new cooperative diversity technique based on a modified IEEE 802.11 Medium Access Control (MAC) protocol. The throughput performance of the proposed MAC protocol is analyzed using a random structured network where nodes are assumed to be equipped with multiple antennas. In our simulations, we consider both single‐ and multiple‐relay scenarios over fading channels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the uplink of an asynchronous multi-carrier direct-sequence code-division multiple-access (MC-DS-CDMA) system with multiple antennas at both the transmitter and the receiver is considered. We analyze the system performance over a spatially correlated Rayleigh fading channel with multiple-access interference (MAI), and evaluate the antenna array performance with joint fading reduction and MAI suppression. Assuming perfect channel knowledge available at the transmitter, maximal ratio transmission is employed to weight the transmitted signal optimally in terms of combating signal fading. At the receiver, adaptive beamforming reception is adopted to both suppress MAI and combat the fading. Note that while correlations among the fades of the antennas in the receive array reduce the diversity gain against fading, the array still has the capability for interference suppression. We examine the effect of varying the number of transmit and receive antennas on both the diversity gain and the interference suppression.  相似文献   

18.
In this paper, a scheme that exploits cooperative diversity of multiple relays to provide physical layer security against an eavesdropping attack is concerned. Relay‐based cognitive radio network (CRN) faces issues multiple issues other than the same as faced by conventional wireless communications. If the nodes in a CRN are able to harvest energy and then spend less energy than the total energy available, we can ensure a perpetual lifetime for the network. In this paper, an energy‐constrained CRN is considered where relay nodes are able to harvest energy. A cooperative diversity‐based relay and subchannel‐selection algorithm is proposed, which selects a relay and a subchannel to achieve the maximum secrecy rate while keeping the energy consumed under a certain limit. A transmission power factor is also selected by the algorithm, which ensures long‐term operation of the network. The power allocation problem at the selected relay and at the source also satisfies the maximum‐interference constraint with the primary user (PU). The proposed scheme is compared with a variant of the proposed scheme where the relays are assumed to have an infinite battery capacity (so maximum transmission power is available in every time slot) and is compared with a scheme that uses jamming for physical layer security. The simulation results show that the infinite battery‐capacity scheme outperforms the jamming‐based physical layer security scheme, thus validating that cooperative diversity‐based schemes are suitable to use when channel conditions are better employed, instead of jamming for physical layer security.  相似文献   

19.
In cooperative communications, multiple relays between a source and a destination can increase the diversity gain. Because all the nodes must use orthogonal channels, multiple‐relay cooperation becomes spectrally inefficient. Therefore, a bestrelay selection scheme was recently proposed. In this paper, we analyzed the performance of this scheme for a system with the relays operating in amplify‐and‐forward mode over identical Nakagami‐m channels using an exact source–relay–destination signal‐to‐noise ratio (SNR).We derived accurate closed‐form expressions for various system parameters including the probability density function of end‐to‐end SNR, the average output SNR, the bit error probability, and the channel capacity. The analytical results were verified through Monte Carlo simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we consider amplify‐and‐forward multiple‐input multiple‐output multiple‐relay systems, where all the nodes have multiple antennas. For enhancing link reliability, we address the problem of designing optimal linear transceiver to minimize the mean squared error (MSE) of symbol estimations subject to the total relay transmit power constraint. This problem is highly complex and has not been solved in the literature. We first simplify this optimization problem to one that takes a singular value vector and a unitary matrix as optimization variables. Then based on the analyses for the simplified problem, we develop an iterative algorithm consisting of one boundary optimization and one unitary matrix constrained optimization. We show analytically that the proposed iterative algorithm always converges, and the MSE is monotonically decreasing from one iteration to the next. Finally, numerical results demonstrate the nearly optimal performance of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号