首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca8Mg(SiO4)4Cl2:Eu2 phosphor doped with Sr2 cation for Ca2 partially, was synthesized by solid-state reaction at high temperature under reducing atmosphere, and its luminescent properties were investigated. The experimental results indicate that the emission intensity of the phosphor increases after being doped with a few amount of Sr2 ion. The emission peak of the phosphor blue shift to about 464 nm when the phosphor is doped with large quantity of Sr2 ions. The excitation spectrum indicates that the phosphor can be well excited by UV and blue light from 300 to 460 nm, and the phosphor was fitted well for the excitation by UV or blue-LED.  相似文献   

2.
Luminescence Properties of Eu~(2 ) and Mn~(2 ) Co-Doped Ca_8Mg(SiO_4)_4Cl_2   总被引:5,自引:1,他引:5  
The green phosphor for white LED, Ca8Mg(SiO4)4Cl2∶Eu2+, Mn2+, was synthesized by high temperature solid state reaction under reducing atmosphere. During the process of the phosphor prepared, the excess CaCl2 can improve the intensity of emission. The experimental results indicate that there is an effective energy transfer from Eu2+ to Mn2+in Ca8Mg(SiO4)4Cl2 host. This kind of energy transfer may be due to resonance transfer, and this energy transfer is limited.  相似文献   

3.
The new phosphor calcium magnesium chlorosilicate, codoped with Eu^2+ and Dy^3+, was synthesized with the help of the high temperature solid state reaction in reducing atmosphere. The excitation and emission spectra were very similar to that of Ca8Mg(SiO4)4Cl2 :Eu^2+, and the Dy^3+ concentration influenced the emission intensity of this phosphor. The intensity of Eu^2+ and Dy^3+ codoped CMSC was stronger than that of Eu^2+ singly doped CMSC. The emission spectrum of the Dy^3+ ion overlapped the absorption band of the Eu^2+ ion, indicating that an energy transfer from Dy^3+ to Eu^2+ took place in CMSC:Eu^2+, Dy^3+ phosphor. The mechanism of the energy transfer from Dy^3+ tO Eu^2+, in this phosphor, might be resonant energy transfer.  相似文献   

4.
A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm,149% under 400 nm,and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+.The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+.The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction,and the critical transfer distance was estimated to be 1.26 nm.A mixture of blue-emitting Ca2PO4Cl:Eu2+,green-emitting(Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices.The average color-rendering index Ra and correlated color temperature(Tc) of the white LEDs were found to be 93.4 and 4590 K,respectively.The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.  相似文献   

5.
The luminescent properties of Eu3 doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f–f transitions of Eu3 . The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of 5D0–7F2. In addition, the ef- fects of the Eu3 content and charge compensators of Li , Na , K , and Cl– ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu3 ions was 0.3 mol–1, and Li ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu3 , Li was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.  相似文献   

6.
采用高温固相反应法合成了蓝色荧光粉NaBa0.98P04:Eu2+0.02.利用射线衍射(XRD)、扫描电镜(SEM)和荧光光谱等实验技术,研究了掺杂离子和掺杂浓度对荧光粉的晶体结构和发光性能的影响.结果表明:制备的粉末为单斜晶系NaBaP04,能被从紫外到蓝光波长范围的激发光有效激发,在波长360nm激发光激发下,发射光为波长在430nm左右的蓝光.同时,研究表明最佳掺杂离子为Ca2+,最佳掺杂浓度为7% mol,荧光粉NaBa0.91Ca0.07PO4:Eu2+0.02的发光强度是NaBa0.98PO4:Eu2+0.02的1.68倍,该方法制备的荧光粉是一种很好的白光LED的蓝色荧光粉材料.  相似文献   

7.
Sol-gel method was utilized to synthesize two different series of red silicate phosphors:MgSiO3 and Mg2SiO4 powder samples doped with Mn2 , conducted the investigation of red long-lasting phosphor: MgSiO3:Eu2 , Dy3 , Mn2 . TGA curves of the gel precursor for two series depicted that the loss of residual organic groups and NO3 groups occurs below 450 ℃. According to the XRD patterns, the major diffraction peaks of the MgSiO3 and Mg2SiO4 series are consistent with a proto-enstatite structure (JCPDS No.11-0273) and a forsterite structure (JCPDS No.85-1364) respectively. With the excitation at 415 nm, the red emission band of Mn2 ions is peaked at 661 nm for MgSiO3:1%(atom fraction) Mn2 or 644 nm for Mg2SiO4:1%(atom fraction) Mn2 . Compared with Mg2SiO4:Mn2 samples, MgSiO3:Mn2 samples exhibit higher luminescence intensity and higher quenching concentration. In addition, the two series co-doped with Eu2 , Dy3 , Mn2 were also prepared. Photo-luminescence and afterglow properties of the two co-doped series were analyzed, which show that MgSiO3:Eu2 , Dy3 , Mn2 is more suitable for a red long-lasting phosphor.  相似文献   

8.
Luminescence enhancement of BaMgSiO4:Eu^2+ by adding borate as flux   总被引:1,自引:0,他引:1  
The luminescence of EU^2+ in BaMgSiO4 with BaB2O4 as flux was studied. The emission spectrum of the phosphor consisted of two bands, peaking at about 398 nm and 515 nm, which were attributed to the emissions from different Eu^2+ sites in the lattice. When the BaB2O4 flux was applied, the intensity of the 398 nm emission was not clearly affected, but the intensity of the 515 nm emission was enhanced by about ten times. Gaussian fitting showed that the emission band at around 515 nm could actually be resolved into two bands with peak wavelengths of 499 nm and 521 nm, respectively. The assignments of the emission bands to the cation sites were carried out according to the values of bond valence. The overlapping of the 398 nm emission band on the excitation band of 515 nm emission implied that energy transfer could occur from the luminescent center related to the 398 nm emission to the center related to the 515 nm emission, and the energy transfer process remarkably enhanced the intensity of the 515 nm emission band. The phosphor had strong excitation at around 350-400 nm and emitted a bright green luminescence. Thus it could have applications as a green component in solid-state lighting devices assembled by near-UV Light Emitting Diodes (LED) combined with tricolor phosphors.  相似文献   

9.
The (Ba1-xSrx)2SiO4∶Eu2 green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f65d1→4f7 transition of the Eu2 ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380, 398, 412, 420, 460 nm). (Ba1-xSrx)2SiO4∶Eu2 is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.  相似文献   

10.
Green light-emitting Ba2SiO4:Eu2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere (a mixture of 5% H2 and 95% N2). The results showed that the co-doping of La and Y could greatly enhance the fluorescence intensity of Ba2SiO4:Eu2+ phosphors. The optimum doping concentration expressed by the x value in (Ba0.985-1.5xREx)2SiO4: 0.03Eu2+ (RE=La or Y) was determined to be of 0.05. The excitation and emission peaks of all as-synthesized phosphors were wide bands. The excitation bands ranged from 250 to 400 nm, which matched well with the wavelength of near ultraviolet white light-emitting diodes (LED) chip and could be used as a potential candidate for the fabrication of white LED. The emission bands from 450 to 550 nm were typical 5d-4f transition emission of Eu2+ and displayed un-symmetry profiles because of the two substitution sites of Ba2+ with Eu2+.  相似文献   

11.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

12.
we developed a new silicate-based full-color phosphor Ba3Lu2(SiO4)3:Eu2+ through solid state reaction.The host crystal structure was isostructural with Ca3Y2(SiO4)3 instead of garnet-type.The phosphor absorbed near-ultraviolet light from 250 to 400 nm,which was very suitable for a color converter of white LED that used UV-LED as the primary light source.The photoluminescence peak wavelength of Ba3Lu2(SiO4)3:Eu2+ was about 461 nm and a shoulder peak was around 522 nm,which resulted from the 5d-4f transition ...  相似文献   

13.
A series of phosphor of MO-RE2 O3-B2 O3: Eu, Mn ( M = Mg, Ca, Sr; RE = Y, La, Gd) were prepared and studied.Excitation spectra exhibited high absorption in UV region (370 ~ 400 nm).There existed two valence states for europium ions Eu2 and Eu 3 , the broad emission band peaking at 515 nm correspond to the 5d-4f emission transition of Eu2 , the sharp emission peaking at 590 and 610 nm correspond to the 5D0→7FJ(J = 1,2,3,4) emission transition of Eu 3 By the introduction of Mg and Y into MO-RE2O3-B2O3: Eu, blue-green emission was restrained ultimately and red emission peaking at 610 nm was enhanced strongly, intensity and colorimetric purity of red light were both enhanced.Furthermore, Mg1-xSrxO-Y2O3-B2O3: Eu was also researched, the introduction of Sr into MgO-Y2O3-B2O3:Eu gives rise to a shift to longer wavelengths of the position of the excitation peak, and the emission spectra varies with the increasing of x simultaneously.  相似文献   

14.
Eu2 activated pyrosilicate phosphor were prepared under a reducing atmosphere by solid-state reaction.The crystal structure of Ba2 MgSi2 O7: Eu2 was analyzed by XRD method.The excitation spectrum of Ba2MgSi2 O7; Eu2 is composed of two broad bands centered at about 310 nm and 395 nm respectively.In the emission spectra, the peak wavelength is at about 507 nm under 380 nm UV excitation.It was found that the introduction of Zn2 into Ba2MgSi2O7: Eu2 Can effectively increase its emission intensity without changing the position of emission peak.And the Eu2 and Ce3 codoped pyrosilicate phosphor is the efficient bluish green phosphor under the excitation of long UV light and its emission intensity is stronger than Eu2 doped pyrosilicate phosphor.  相似文献   

15.
采用高温固相反应法制备了Sr0.9M0.1Al2O4:Eu2+,Dy3+(M=Mg,Ca,Ba)长余辉发光材料,并对其晶体结构、光谱性质、余辉特性进行了分析.X射线衍射测试结果表明,Mg2+,Ca2+,Ba2+离子部分取代SrAl2O4基质中的Sr后,基质晶体结构并没有发生改变.光谱测试结果表明,Mg2+,Ca2+,Ba2+取代后发光材料的激发光谱都是一个从250~450 nm范围内的宽激发带,在266nm,320nm,360nm,416 nm处各有一个激发峰.发射光谱中Mg2+和Ba2+的取代使波长出现蓝移,而Ca2+的取代使波长出现红移.余辉测试结果表明,Ca2+取代后的余辉时间长于Mg2+和Ba2+的取代.  相似文献   

16.
Long afterglow phosphors MAl2O4:Eu2 , Dy3 (M=Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu2 , Dy3 and SrAl2O4:Eu2 , Dy3 are with monoclinic crystal structure and phosphor BaAl2O4:Eu2 , Dy3 is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4:Eu2 , Dy3 (M=Ca,Sr,Ba) indicates that the luminescent materials can be excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu2 , Dy3 (M=Ca, Sr, Ba) is found mainly at λem of 440 nm (M=Ca), 520 nm (M=Sr) and 496 nm (M=Ba) respectively, the corresponding colors of emission light are blue, green and cyna-green respectively. The afterglow decay tendency of phosphors can be summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I=At-n, and the sequence of afterglow intensity and time is Sr>Ca>Ba.  相似文献   

17.
SpectralPropertiesandSensitizationofCe3+andEu2+CodopedCalciumZincChlorosilicateLinHai(林海),LiuXingren(刘行仁),ZhangXiao(张晓)(Cha...  相似文献   

18.
A novel red phosphor Ca2GeO4:Eu3+ was prepared by the traditional solid state reaction. X-ray powder diffraction (XRD) analysis suggested that there was no impurity phase. The study on the diffusion reflection spectra of the undoped and Eu3+ doped Ca2GeO4 phosphors revealed an absorption band superposed of that of the host material and the Eu3+ ions. And the excitation spectrum presented a dominating broad band at 250–300 nm which was attributed to both the host material absorption and the charge transfer band (CTB) of the Eu3+ ions. The investigation on the excitation and diffusion spectra showed that there was an effective energy transfer from the host material to the Eu3+ ions. This was favorable to the red emission of the phosphor. Photoluminescence measurements indicated that the phosphor presents bright red emission at 611 nm under UV excitation. In addition, the Al3+ or Li+ codoping enhanced the red emission from Ca2GeO4:Eu3+ by about 3 and 2 times respectively under UV excitation.  相似文献   

19.
Long afterglow SrAl2 O4: Eu2 , Dy3 phosphor was synthesized by microemulsion method. The synthesized phosphor was characterized by XRD. XRD pattern indicates that the phosphor has monoclinic SrAl2 O4 crystal structre.The microstructure of the phosphor was investigated by SEM and TEM. The excitation spectrum, emission spectrum and afterglow decay curve were measured, the wide range of excitation wavelength indicated that the luminescent material could be excited by the light from ultraviolet ray to visible light, and the emission maximum was found to peak mainly at λem of 525 nm. The sample excited by ultraviolet visible light could emit bright green light.  相似文献   

20.
Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号