首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ten Veen  & Postma 《Basin Research》1999,11(3):223-241
Six time-slice reconstructions in the form of palaeogeographical maps show the large-scale tectonic and sedimentary evolution of the Hellenic outer-arc basins in central and eastern Crete for the middle and late Miocene. The reconstructions are based on extensive field mapping and a detailed chronostratigraphy. Latest compressional features related to subduction and associated crustal thickening are poorly dated and assigned a middle Miocene age. These are possibly contemporaneous with widespread occurrence of breccia deposits all over Crete. The precise date for the onset of extension, possibly controlled by the roll-back of the subsiding African lithosphere, remains at this point a discussion. We present circumstantial evidence to place the beginning of the roll back in the middle Miocene, during the accumulation of an arc-parallel, westward-draining fluvial complex. The continental succession is transgressed steadily until it is interrupted by an important tectonic event at the boundary of the middle and late Miocene (normally seen as the onset of slab roll-back). In the earliest late Miocene a few large-sized fault blocks along arc-parallel normal faults subsided rapidly causing a deepening of the half-graben basins up to approximately 900 m. About 1 Myr later, a new N020E and N100E fault system developed fragmenting the existing half-grabens into orthogonal horst and graben structure. The development of the new fault system caused original continental regions to subside and original deep basins to emerge, which is not easy to reconcile with roll back controlled extensional processes alone. Underplating and inherited basement structure may have played here an additional role, although evidence for firm conclusions is lacking. In late Miocene times (late Tortonian, ≈7.2 Ma), the extensional outer arc basins become deformed by N075E-orientated strike-slip. The new tectonic regime begins with strong uplift along existing N100E fault zones, which developed about E–W-striking topographical highs (e.g. Central Iraklion Ridge and Anatoli anticline) in about 0.4 Myr. The strong uplift is contemporaneous with abundant landsliding observed along an important N075E fault zone crossing eastern Crete and with renewed volcanic activity of the arc. The origin of the ridges may be due to active folding related to the sinistral slip.  相似文献   

2.
3.
ten Veen  & Postma 《Basin Research》1999,11(3):243-266
Crustal thickening north of the Hellenic subduction zone continued in the most external zones (e.g. Crete) probably until the late middle Miocene. The following period of predominant extension has been related by various workers to a number of causes such as: (1) trench retreat (roll back) driven by the pull of the African slab and (2) gravitational body forces associated with the thickened crust, both in combination with NNE motion of the African plate combined with westward extrusion of the Anatolian block along the North Anatolian Fault. To verify these hypotheses an inventory of fault orientations and fault-block kinematics was carried out for central and eastern Crete and adjoining offshore areas by combining satellite imagery, digital terrain models, and structural, seismic, sedimentary and stratigraphical field data, all set up in a GIS. The GIS data set enabled easy visualization and combination of data, which resulted in a relatively objective analysis. The geological results are discussed in the light of a numerical model that investigated the intraplate stresses resulting from the above mentioned forces. Our tectonostratigraphic results for the late Neogene of central and eastern Crete show three episodes of basin extension following a period of approximately N–S compression. In the earliest Tortonian, N130E- to N100E-trending normal faults developed, resulting in a roughly planar, arc-parallel fault system aligning strongly asymmetric half-grabens. The early Tortonian to early Messinian period was characterized by an orthogonal fault system of N100E and N020E faults resulting in rectangular grabens and half-grabens. From the late Tortonian to early Pleistocene, deformation occurred along a pattern of closely spaced, left-lateral oblique N075E faults, orientated parallel to the south Cretan trenches. Deformation phases younger than early Pleistocene are dominated by normal to oblique faulting along WSW–ENE (N050E) faults and dextral, oblique motions along NNW–SSE (N160E) faults. Many faults that were generated during previous deformational episodes appear to be reactivated in later periods. Our tectonostratigraphy points to a three step anticlockwise rotation of active fault systems since the late middle Miocene compressional phase. We suggest here that the rotation is associated with a reorganization of the stress field going from SSW–NNE tension in the early late Miocene to NE–SW left-lateral shear in the Quaternary. The rotation is likely to be a response to arc-normal pull forces combined with a progressive increase of the curvature of the arc. During the Pliocene to Recent period, the SSW-ward retreat of the arc and trench system relative to the African plate was accomplished by transform motions in the eastern (Levantine) segment of the Hellenic Arc, resulting in, respectively, NNW–SSE and NE–SW left-lateral shear on Crete.  相似文献   

4.
Abstract The Pitaiito Basin is an intramontane basin (15 × 20 km2) situated at the junction of the Central and Eastern Cordillera in the southern part of the Colombian Andes. Tectonic structures, evolution of the basin and distribution of the sediments suggest that the basin was formed adjacent to an active dextral strike-slip fault. Based on sedimentation rates it is estimated that subsidence started around 4.5 Ma. The basin can be divided into a relatively shallow western part (c. 300 m deep) and a deep eastern part (c. 1200 m deep). The transition between both areas is sharp and is delineated by a NW/SE-oriented fault. The position of this fault is reflected by the areal distribution of the deep non-exposed sediments as well as sediments at the surface: west of this fault the basin infill consists of coarse to medium elastics (conglomerates and sand) whereas in the eastern part fine elastics (clay and peat) are present. The lateral transition between both types of sediment is abrupt and its position is stable in time. The surface and near surface sediments in the Pitalito Basin reflect the last stage of sedimentary infill which came to a halt between 17,000 and 7500 years bp . These sediments were deposited by an eastward prograding fluvial system. The western upstream part of this system differs significantly from that of the eastern part which forms the downstream continuation. The western part exhibits unstable, shallow fluvial channels that wandered freely over the surface which predominantly consists of clayey overbank sediments. The alluvial architecture in the eastern half is characterized by stable channels and thick accumulations of organic-rich flood basin sediments and resembles an anastomosing river. The transition between both alluvial systems also coincides with the N/S-oriented normal fault. Palaeoclimatic conditions over the last c. 61,500 years were determined by means of a pollen record. From c. 61,500 to 20,000 years BP the mean annual temperature fluctuated considerably and decreased by 2–3oC during the relatively warm periods (interstadials) and by 6–8oC during the cold periods (stadials) in comparison with modern temperatures. These changes led to a displacement of the zonal vegetation belts from c. 200 m during the stadials to c. 1500 m in interstadial times without significant effects on the fluvial system present in the Pitaiito Basin until c. 20,000 years BP. Around this period the organic-rich eastern flood basins were choked with sediments and peat growth came to an end. Palynological and sedimentological data suggest that around that period the climate was cold (Δ 6–8oC) and very dry and that a sparse vegetation cover was present around the basin. In these semi-arid climatic conditions the river system changed from an anastomosing pattern to one with ephemeral stream characteristics. This may have lasted until at least 17,000 years BP. Somewhere between 17,000 and 7500 years BP the eastward-flowing infilling river system changed into a NW-flowing erosive river system due to climatic or tectonic control and the present state was reached.  相似文献   

5.
Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia–Eurasia collision zone offer the unique possibility to study middle–late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long‐term evolution of the Iranian Plateau, including the regional spatio‐temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle–late Miocene crustal shortening and thickening processes led to the growth of a basement‐cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland‐basin (Great Pari Basin) to the east between 16.5 and 10.7 Ma. By 10.7 Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement‐cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle‐flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.  相似文献   

6.
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone.  相似文献   

7.
The Turiec Basin (TB) of Slovakia formed in the Miocene when the West Carpathians escaped from the Alpine region. The 1,250-m-thick sedimentary Neogene fill of the basin preserved fossil leaves as well as endemic bivalves, gastropods, and ostracodes. The paleolimnologic changes recorded in the TB infill were derived from the most abundant fossils, the ostracodes. Five contemporaneous ostracode assemblages within the Late Miocene lacustrine system were distinguished through statistical analysis. These assemblages have low species similarity, between 2.1 and 24.1%, and are recognized by shape differences among the Candoninae. The ostracode assemblages, mollusca fossils, and Sr-isotope ratios suggest a low-salinity environment at the beginning of the Late Miocene, during a brief connection with the Central Paratethys. When the connection ceased, the basin became an isolated freshwater lake, with five zones differentiated ecologically and bathymetrically using the ostracode assemblages. Taxonomic comparison of the faunas of the TB and the freshwater to brackish Neogene basins of Europe demonstrates the endemic character of the TB ostracode fauna. The biologic characteristics of the ostracode families, along with the geology of the lake basin, suggest that the longevity of the Late Miocene lake probably exceeded 1 Ma.  相似文献   

8.
9.
We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ~10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ~5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ~10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ~10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.  相似文献   

10.
ABSTRACT A Tortonian to Pliocene magnetostratigraphy of the Fortuna basin supports a new chronostratigraphic framework, which is significant for the palaeogeographical and geodynamic evolution of the Eastern Betics in SE Spain.
The Neogene Fortuna basin is an elongated trough which formed over a left-lateral strike-slip zone in the Eastern Betics in the context of the convergence between the African and Iberian plates. Coeval with other basins in the Alicante–Cartagena area (Eastern Betics), rapid initial subsidence in the Fortuna basin started in the Tortonian as a result of WNW–ESE stretching. This led to transgression and deposition of marine sediments over extensive areas in open connection with the neighbouring basins. Since the late Tortonian, N–S to NW–SE compression led to inversion of older extensional structures. The transpressional tectonics along the NE–SW-trending Alhama de Murcia Fault is related to the rising of a structural high which isolated the Fortuna basin from the open Mediterranean basin. The progression of basin confinement is indicated by the development of restricted marine environments and deposition of evaporites (7.8–7.6 Ma). The new basin configuration favoured rapid sediment accumulation and marine regression. The basin subsided rapidly during the Messinian, leading to the accumulation of thick continental sequences. During the Pliocene, left-lateral shear along the Alhama de Murcia Fault caused synsedimentary folding, vertical axis block rotations and uplift of both the basin and its margins. The overall sedimentary evolution of the Fortuna basin can be regarded as a developing pull-apart basin controlled by NE–SW strike-slip faults. This resembles the evolution that has taken place in some areas of the Eastern Alboran basin since the late Tortonian.  相似文献   

11.
This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro‐foreland basin (Venetian–Friulian Basin). Our discussion is based on the depositional architecture and basin‐scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long‐term trends and short‐term high‐magnitude (‘aberrant’) episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year?1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year?1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene–Pleistocene, when the basin‐scale depositional rate increased to an average of 0.26 mm year?1 (Pliocene) and 0.73 mm year?1 (Pleistocene). This result fits nicely with the long‐term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7–0.9 Ma), the acceleration of the global cooling trend (since 3–4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high‐frequency and high‐magnitude cooling–warming cycles are particularly powerful in promoting erosion in mid‐latitude mountain belts and therefore in increasing the sediment flux in foreland basins.  相似文献   

12.
The Serra Gelada sea cliffs are carved in Mesozoic carbonate rocks belonging to the External Zones of the eastern Betic Cordillera (Alicante, SE Spain). Several normal faults with vertical slips of more than a hundred metres have played an important role in the origin of this coastline. Some previous studies propose that the present cliff morphology was mainly originated by Quaternary fault activity. However, the integration of geomorphological features, stratigraphical and sedimentological data, together with the results of the tectonic analysis of fractures occurring in Serra Gelada, and a detailed study of seismic reflection profiles carried out in the adjacent continental shelf, indicate that these normal faults were active mainly during the late Miocene. Therefore, the Serra Gelada sea cliffs represent a tectonically controlled long-term landscape. Thus, normal faults have not significantly modified the Serra Gelada relief since then. Furthermore, the northern part of the Serra Gelada cliff may be considered as an inherited pre-Quaternary relict palaeocliff since it has only undergone very little erosive recession.  相似文献   

13.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

14.
The Late Messinian fill of the Nijar Basin (Betic Cordillera, southeastern Spain) mainly consists of clastic deposits of the Feos Formation that at basin margins rest unconformably above the primary evaporites of the Yesares Formation, the local equivalent of the Mediterranean Lower Gypsum. The Feos Fm. records the upward transition towards non‐marine environments before the abrupt return to fully marine conditions at the base of the Pliocene. The Feos Fm. is clearly two‐phase, with ‘lower’ and ‘upper’ members, which exhibit substantial differences in terms of facies, thickness, depositional trends and cyclical organization. These members record two distinct sedimentary and tectonic stages of Nijar Basin infilling. A high‐resolution, physical‐stratigraphic framework is proposed based on key beds and stratigraphic cyclicity and patterns that differ largely from those of most previously published studies. The predominant influence on stratigraphic cyclicity is interpreted to be precessionally driven climate changes, allowing their correlation to the Late Messinian astronomically calibrated chronostratigraphic framework. Detailed correlations suggest a phase of enhanced tectonic activity, possibly related to the Serrata‐Carboneras strike‐slip fault zone, during the first stage (‘lower’ member), resulting in a strongly articulated topography with structural lows and highs controlling sediment thickness and facies variation. Tectonic activity decreased during the second stage (‘upper’ member), which is characterized by (1) a progressively dampened and homogenized, (2) overall relative base‐level rise and (3) gradual establishment of hypohaline environments. Facies characteristics, overall stacking patterns and depositional trends of the Feos Fm. are analogous with uppermost Messinian successions of the Northern Apennines, Piedmont Basin and Calabria. Despite minor differences related to the local geodynamic setting, these basins experienced a common Late Messinian history that supports the development of a single, large Mediterranean water body characterized by high‐frequency, climatically‐driven changes in sediment flux and base‐level.  相似文献   

15.
Fault throw gradients create transverse folding, and this can influence accommodation creation and sedimentary routing and infill patterns in extensional half-graben basin. The Fanja half-graben basin (Oman) offers an excellent outcrop of an alluvial fan succession displaying cyclical stacking and basin-scale growth-fold patterns. These unique conditions allow for an investigation of fault-timing and accommodation development related to fault-transverse folding. Our study combines geological mapping, structural analysis, sedimentary logging and correlation, and bulk mineralogical compositions. Mapping reveals that the basin is bounded by a regional-scale fault, with local depocentres changing position in response to transverse syncline and anticline development ascribed to fault-displacement gradients. The alluvial Qahlah Formation (Late Cretaceous) is unconformably overlying the Semail Ophiolite, and is in turn overlain by the marine Jafnayn Formation (Late Palaeocene). Facies and stratigraphic analysis allows for subdivision of the Qahlah Formation into four informal units, from base to top: (i) laterite in topographic depressions of the ophiolite, (ii) greenish pebbly sandstones, deriving from axially draining braided streams deposited in the low-relief half-graben basin. This green Qahlah grades vertically into the red Qahlah, formed by alluvial fanglomerates and floodplain mudstones, with drainage patterns changing from fault-transverse to fault-parallel with increasing distance to the main fault. The red Qahlah can be divided into (iii) the Wadi al Theepa member, found in a western basin depocentre, with higher immaturity and sand: mud ratio, suggesting a more proximal source, and (iv) the Al Batah member, located in the eastern part of the basin. The latter shows better sorting, a lower sand: mud ratio, and more prominent graded sub-units. It also shows eastward expansion from an orthogonal monocline, ascribed to accommodation developed in a relay ramp. Changes in sedimentary facies and depositional patterns are consistent with differential mineralogical composition. The Green Qahlah is composed of quartz and lithic mafic rock fragments, sourced from the ophiolite and schists of the metamorphic basement. The Red Qahlah is composed of chert and kaolinite sourced from the Hawasina Nappe succession in the footwall of the master fault. These changes in source area are linked to unroofing of fault-footwalls and domal structures during the extensional collapse of the Semail Ophiolite. The novelty of this study resides in linking sedimentology and fault-displacement events controlling fault-perpendicular folding, and its influence on depocentre generation and stratigraphic architecture. This is an approach seldom considered in seismic analysis, and rarely analysed in outcrop studies, thus placing the results from this study among the key outcrop-based contributions to the field.  相似文献   

16.
Exceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.  相似文献   

17.
18.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   

19.
The basin fill of Lake Annecy was investigated from a 44 m core which reached down to glacial sediments of the last glaciation (called Würm in the alpine areas). We analyzed three main parameters: sediment texture (optical microscopy and laser microgranulometry), clay mineral assemblages (CMA by XRD), and organic matter (OM by Rock-Eval pyrolysis). Settling of suspended load, under variable hydrodynamic conditions is the main depositional process. Both CMA and OM provenances can be recognized for the different sedimentary and igneous-metamorphic formations (Carboniferous to Quaternary, and older crystalline basement) and corresponding areas, in the surrounding region of Lake Annecy. Oligocene-Miocene molasses, Early Cretaceous marls, and Early-Middle Jurassic marls and shales are the main sedimentary sources. Two distinct processes were operating: destruction of glacial sediments (till sensu largo) and reworking, or direct erosion and run-off from ice-free catchment areas. Clay minerals related to pedogenesis, and non-reworked terrestrial and lacustrine OM, were progessively added to these primary sources during the Late Würmian/Holocene transition to warmer climatic conditions. Rapid modifications of CMA and OM sources during the earlier phase of sedimentary infilling (Unit 2) suggest that valley glaciers connected to the lake basin almost completely disappeared within a few centuries.  相似文献   

20.
The Calabrian-Peloritan Arc (southern Italy) represents a fragment of the European margin, thrusted onto the Apennines and Maghrebides during the Europe-Apulia collision in the late Early Miocene. A reconstruction of the pre-Middle Miocene tectono-sedimentary evolution of the southern part of the Calabrian-Peloritan Arc (CPA) is presented, based on a detailed analysis of the Stilo-Capo ?Orlando Formation (SCO Fm). Deposition of the SCO Fm occurred in a series of mixed-mode piggy-back basins. Basin evolution was controlled by two intersecting fault systems. A NW-SE oriented system delimited a series of sub-basins and fixed the position of feeder channels and submarine canyons, whereas a NE-SW oriented system controlled the axial dispersal of coarse-grained sediments within each of the sub-basins. From base to top, sedimentary environments change from terrestrial and lagoonal to upper bathyal over a timespan of approximately 12 Myr (late Early Oligocene-late Early Miocene). During this interval, extensional tectonic activity alternated with oblique backthrusting events, related to dextral transpression along the NW-SE oriented faults. This produced a characteristic pulsating pattern of basin evolution. Oligocene-Early Miocene evolution of the W. Mediterranean basin was dominated by ‘roll back’ of the Neotethyan oceanic lithosphere. Considerable extension in the overriding European Plate gave rise to the formation of a back arc-thrust system. The initial stages of Calabrian Basin evolution are remarkably similar to the evolution of rift basins in the back arc (Sardinia). The Calabrian basins, which are inferred to have originated as thin-skinned pull-apart basins, were subsequently incorporated into the Apennines-Maghrebides accretionary wedge by out-of-sequence thrusting, and became decoupled from the back arc. Periodic restabilization of the accretionary wedge, resulting in an alternation of backthrusting and listric normal faulting, provides an explanation for the structural evolution of these mixed-mode basins. The basins of the southern part of the CPA may be termed ‘spanner’ or ‘looper’ basins, in view of their characteristic pulsating structural evolution, superimposed upon their migration toward the foreland. This new term adequately accounts for the occurrence of tectonic inversions in long-lived piggy-back basins, as expected in the light of the dynamics of accretionary wedges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号