首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Hybrid nanocomposites based on organophillic montmorillonite (MMT) and ethylene–propylene–diene rubber (EPDM) have been prepared by a melt compounding process. From analysis by X‐ray diffraction and transmission electron microscopy, the rubber molecules were found to be intercalated into the galleries of organoMMT and the silicate layers of organoMMT are uniformly dispersed as platelets of 50–80 nm thickness in the EPDM matrix. Dynamic mechanical studies reveal a strong rubber–filler interaction in the hybrid nanocomposite which is manifested in the lowering of tan δ at the glass transition temperature. The hybrid nanocomposites exhibit great improvement in tensile and tear strength, and modulus, as well as elongation‐at‐break. Moreover, the permeability of oxygen for the hybrid nanocomposite was reduced remarkably. © 2002 Society of Chemical Industry  相似文献   

2.
Rubber nanocomposites containing one type of nanofiller are common and are widely established in the research field. In this study, nitrile rubber (NBR) based ternary nanocomposites containing modified silicate (Cloisite 30B) and also nano‐calcium carbonate (nano‐CaCO3) were prepared using a laboratory internal mixer (simple melt mixing). Effects of the hybrid filler system (filler phase have two kind of fillers) on the cure rheometry, morphology, swelling, and mechanical and dynamic–mechanical properties of the NBR were investigated. Concentration of nano‐CaCO3 [0, 5, 10, and 15 parts per one hundred parts of rubber by weight (phr)] and organoclay (0, 3, and 6 phr) in NBR was varied. The microstructure and homogeneity of the compounds were confirmed by studying the dispersion of nanoparticles in NBR via X‐ray diffraction and field emission scanning electron microscopy. Based on the results of morphology and mechanical properties, the dual‐filler phase nanocomposites (hybrid nanocomposite) have higher performance in comparison with single‐filler phase nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42744.  相似文献   

3.
The incorporation of fillers into elastomers has profound effects on the mechanical, physical, and thermal properties of the nanocomposites that form. In this study, styrene–butadiene rubber as a matrix was reinforced separately with 10‐, 15‐, or 23‐nm CaSO4, which was synthesized by an in situ deposition technique. The mixing and compounding were performed on a two‐roll mill, and sheets were prepared in a compression‐molding machine. Properties such as the swelling index, specific gravity, tensile strength, elongation at break, modulus at 300% elongation, Young's modulus, hardness, and abrasion resistance were measured. The morphology of the rubber nanocomposites was also performed with scanning electron microscopy to study the dispersion of the nanofiller in the rubber matrix. The thermal decomposition of the rubber nanocomposites was studied with thermogravimetric analysis, and the results were compared with those of commercial CaSO4‐filled styrene–butadiene rubber. A reduction in the nanosizes of CaSO4 led to an enhancement of the mechanical, physical, and thermal properties of the rubber nanocomposites. Above a 10 wt % filler loading, the styrene–butadiene rubber showed a reduction in all properties. This effect was observed because of the agglomeration of the nanoparticles in the rubber matrix. The thermodynamic parameters were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2018–2026, 2007  相似文献   

4.
Homogeneous multiwalled carbon nanotube/montmorillonite hybrid filler (HMM) dispersion was prepared by co‐ultrasonication and was subsequently used to prepare ethylene‐co‐vinyl acetate (EVA) nanocomposites by solution blending method. XRD and TEM analysis of HMM confirm significant interaction between the montmorillonite (MMT) layers and multiwalled carbon nanotubes (MWCNT) in line with previous reports. Analysis of the nanocomposites shows the constituent fillers to be homogeneously dispersed in EVA matrix. Mechanical properties of neat EVA are remarkably improved with HMM content up to 3 wt% followed by reversion. Maximum improvement observed in tensile strength, elongation at break, and toughness are 424%, 109%, and 1122%, respectively. Results show maximum thermal stability at 4 wt% and best dielectric response at 1 wt% HMM content. Exceptional mechanical and dielectric properties of EVA nanocomposites attained may be attributed to homogeneous dispersion of fillers and improved polymer–filler interaction. Comparison shows excellent synergy between MWCNT and MMT towards mechanical reinforcement of EVA. POLYM. ENG. SCI., 58:1155–1165, 2018. © 2017 Society of Plastics Engineers  相似文献   

5.
Clay-assisted dispersion of MWCNT has emerged as a novel alternative to its conventional modification. The report deals with preparation of MWCNT/hectorite hybrid (HMH) by dry grinding method and its utilization for the reinforcement of styrene butadiene rubber (SBR). Significant improvement in tensile strength (210%) and elongation at break (42%) of SBR/HMH nanocomposite at 0.7 wt.% HMH shows its superior reinforcing efficiency. Comparison with individual fillers confirms significant synergy. Best thermal stability and dielectric response are achieved at 0.3 and 0.7 wt.% filler contents respectively. Improved properties of the nanocomposites are ascribed to enhanced level of filler dispersion and polymer-filler interaction.  相似文献   

6.
Silica-, nanoclay-, and carbon black (CB)-filled ethylene–propylene–diene terpolymer (EPDM) mixtures were prepared and subsequently vulcanized. Rheological properties and cure characteristics of the mixtures and mechanical properties of vulcanizates were measured. Rheological property measurements indicated the storage modulus, loss modulus, and complex dynamic viscosity of silica-filled EPDM mixtures were much higher than those of CB-filled EPDM mixtures while tan δ values were lower. The optimum cure time of silica- and nanoclay-filled EPDM mixtures increased with filler loading, whereas the values for CB-filled mixtures slightly decreased with loading. The hardness, modulus, elongation at break, and tensile strength of all the vulcanizates increased with increasing filler loading. The elongation at break of CB-filled EPDM vulcanizates increased insignificantly with CB loading. Among the three fillers, the increase of the tensile strength and elongation at break was most significant for silica-filled EPDM vulcanizates. Remarkably, for 30 phr silica-filled EPDM vulcanizates, a tensile strength and elongation at break of 23.5 MPa and 1045% was achieved, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The loading of a sulfur‐bearing silanized silica nanofiller in ethylene‐propylene‐diene rubber with 4.5 wt% of ethylidene norbornene diene content was increased progressively to 60 parts per hundred rubber by weight. The rubber compounds were cured via the tetrasulfane groups of the silane by adding sulfenamide accelerator and zinc oxide. The hardness, tensile strength, elongation at break, stored energy density at break, tear strength, Young's modulus, M50–M300, compression set, cyclic fatigue life, and bound rubber content of the rubber vulcanizates were measured. With the exception of the elongation at break and compression set which deteriorated, the remaining properties improved and the rate of cure, optimum cure time, and cross‐link density benefited also when the loading of silica was increased in the rubber. The bound rubber content was unchanged, and the cyclic fatigue life of the rubber vulcanizate enhanced considerably when silica was added. Optimizing the chemical bonding between the rubber and filler via the tetrasulfane groups of bis(3‐triethoxysilylpropyl)‐tetrasulfide reduced the chemical curatives in the rubber. This was a major improvement in health, safety, and environment. POLYM. COMPOS., 34:2019–2025, 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
New applications of both pea hull fiber (PHF) and PHF‐derived nanowhiskers (PHFNW), isolated from PHF by acid‐hydrolysis, as fillers in starch‐based biocomposite films were explored in this work. Two series of films were prepared by blending pea starch (PS), respectively, with PHF and PHFNW. The effects of PHF and PHFNW as filler on the structure and properties of the composite films were comparatively investigated by observation of morphology and analysis of thermal, optical, and mechanical properties. The results revealed that the PS/PHFNW nanocomposite films exhibited improved physical properties over both the neat PS film and PS/PHF microcomposite films. The light transmittance at 800 nm, tensile strength, elongation at break, and Young's modulus were 56.0%, 4.1 MPa (Megapascal), 30.1%, 40.3 MPa, respectively, for the PS film without filler; 58.0%, 7.6 MPa, 41.8%, and 415.2 MPa for the PS/PHFNW film containing 10 wt% filler; and 37.2%, 2.8 MPa, 17.0%, and 29.8 MPa for the PS/PHF film containing 10 wt% filler. The improvement to the properties of PS/PHFNW nanocomposite films may be attributed to the nanometer size effect of PHFNW, which resulted in the homogeneous dispersion of PHFNW within the PS, and the strong interactions between the matrix and the nanoscale filler. POLYM. ENG. SCI., 2009. Published by the Society of Plastics Engineers  相似文献   

9.
Blends of natural rubber (NR) and synthetic rubbers are widely used in the rubber industry to meet specific performance requirements. Further, the emerging field of organomodified clay/rubber nanocomposites could provide a host of novel materials having a unique combination of properties to meet various stringent service conditions. Previous studies have shown that at very low dosages, china clay (kaolin) modified with sodium salt of rubber seed oil (SRSO) improved the cure characteristics and physico‐mechanical properties of NR. Results of the present study show improved cure characteristics and physico‐mechanical properties for blends of NR with butadiene rubber and nitrile rubber containing 4 phr of SRSO‐modified kaolin as indicated by reduction in optimum cure time along with higher tensile strength, tensile modulus and elongation at break for their vulcanizates as compared to those containing unmodified kaolin. The SRSO‐modified kaolin/rubber nanocomposites showed improved flex resistance, reduced heat build‐up, tan delta and loss modulus and higher chemical crosslink density index, indicating a reinforcing effect of the SRSO‐modified kaolin, enabling the nanocomposites to have potential industrial applications. © 2015 Society of Chemical Industry  相似文献   

10.
Three different surface modifications of montmorillonite (MMT) have been investigated regarding the modifier effect on the ultimate properties of natural rubber-clay nanocomposites. The reference filler was modified by natrification of the native MMT, and was subsequently modified by two alkylammonium salts to achieve exchange of Na+ with selected organic cations, either octadecyltrimethylammonium (ODTMA) or oleyltrimethylammonium (OLEYL). Consequently, varying concentrations of MMT fillers (1, 3, 5 and 10 phr) were mixed with the elastomeric matrix natural rubber SMR 20 aimed to melt intercalation. For both composites containing organo-modified fillers, vulcanization characteristics revealed an increase of curing rate with rising filler concentrations, while XRD diffraction indicated the formation of intercalated as well as exfoliated structures. The morphology of the natural rubber-clay composites examined by electron microscopy (TEM and SEM) supported the conclusions of the XRD results regarding the intercalation and exfoliation of the surface-modified fillers to smaller nano-size aggregates, particularly tactoids of a few layers or a few thin clay layers. Tensile strength and elongation at break, increased with rising mass content of MMT fillers in the composites. The dependences indicate certain differences in the reinforcement mechanism depending on the surface modifier; while the effect of ODTMA consists in substantial hydrophobization of the surface, it is suggested that OLEYL filler apparently participates also in vulcanization reaction by the double bond in the middle of the aliphatic chain of the ligand.  相似文献   

11.
Multiwalled carbon nanotube/hectorite hybrid filler (HMH) was prepared by simple dry grinding method. It was subsequently used for the reinforcement of technologically compatible acrylonitrile butadiene rubber (NBR)/ ethylene-co-vinyl acetate (EVA) blend through solution intercalation method. Analysis of the prepared blend nanocomposites confirms homogeneous dispersion of the constituent fillers in the polymer matrix and significant interaction between two types of constituent fillers. Mechanical properties of NBR/EVA blend are significantly improved with HMH content up to 4 wt.% followed by reversion. Maximum improvement observed in tensile strength, elongation at break and toughness are 106%, 37% and 171% respectively without significant rise in Young’s modulus. Results also show best dynamic mechanical and dielectric response at 4 wt.% and 3 wt.% HMH content respectively. Enhanced mechanical, dynamic mechanical and dielectric properties of the blend nanocomposites attained may be attributed to fair degree of compatibility between the two polymer matrices, homogeneous dispersion of fillers and improved polymer-filler interaction.  相似文献   

12.
The effect of filler loading and epoxidation on curing characteristics, dynamic properties, tensile properties, morphology, and rubber-filler interactions of paper-sludge-filled natural rubber compounds have been studied. Two different types of natural rubber, SMR L and ENR 50, having 0% and 50% of epoxidation and conventional vulcanization were used. Paper sludge was used as a filler and the loading range was from 0 to 40 phr. Compounding was carried out using a laboratory-sized two-roll mill. The scorch time for both rubber compounds decreased with filler loading. The cure time was found to decrease with increasing filler content for SMR L vulcanizates, whereas for ENR 50, the cure time seemed to be independent of the filler loading. Dynamic properties, i.e., maximum elastic torque, viscous torque, and tan delta, increase with filler loading in both grades of natural rubber. Results also indicate that both rubbers show increment in tensile modulus but inverse trend for elongation at break and tensile strength. However, for a fixed filler loading, ENR 50 compounds consistently exhibit higher maximum torque, modulus at 100% elongation, and modulus at 300% elongation, but lower elongation at break than SMR L compounds. In the case of tensile strength, ENR 50 possesses higher tensile strength than SMR L at 10 to 20 phr, but the difference is quite small at 30 and 40 phr. These findings might be associated with better rubber-filler interaction between the polar hydroxyl group of cellulose fiber and the epoxy group of ENR 50.  相似文献   

13.
Polystyrene‐Organo Montmorillonite (PS‐MMT) nanocomposites were prepared by suspension free radical polymerization of styrene in the dispersed organophilic montmorillonite. The results of X‐ray diffraction (XRD) and Transmission Electron Microscopy (TEM) indicated that exfoliated nanocomposites were achieved. The effect of organic modifiers (surfactants) on the properties of the synthesized nanocomposites was studied. It is found that polystyrene‐MMT nanocomposite with 5.0 wt% of organo‐MMT gave the greatest improvement in thermal stability, and polystyrene‐MMT nanocomposites with 7.5 wt% of organo‐MMT showed the greatest improvement in mechanical properties, compared with that of pure polystyrene (PS) in our experimental conditions. The alkyl chain length of surfactant used in fabricating organo‐MMT affects the synthesized PS nanocomposites: the longer the alkyl chain length that the surfactant possesses, the higher the glass transition temperature of the PS nanocomposite, However, the organoclay in the nanocomposites seems to play a dual role: (a) as nanofiller leading to the increase of storage modulus and (b) as plasticizer leading to the decrease of storage modulus. This results in a lower storage modulus of PS‐TMOMMT and PS‐TMTMMT nanocomposites than that of PS‐TMDMMT and PS‐TMCMMT nanocomposites. Further study is needed to confirm the above hypothesis.  相似文献   

14.
This study describes the preparation of polystyrene–clay nanocomposite (PS‐nanocomposite) colloidal particles via free‐radical polymerization in dispersion. Montmorillonite clay (MMT) was pre‐modified using different concentrations of cationic styrene oligomeric (‘PS‐cationic’), and the subsequent modified PS‐MMT was used as stabilizer in the dispersion polymerization of styrene. The main objective of this study was to use the clay platelets as fillers to improve the thermal and mechanical properties of the final PS‐nanocomposites and as steric stabilizers in dispersion polymerization after modification with PS‐cationic. The correlation between the degree of clay modification and the morphology of the colloidal PS particles was investigated. The clay platelets were found to be encapsulated inside PS latex only when the clay surface was rendered highly hydrophobic, and stable polymer latex was obtained. The morphology of PS‐nanocomposite material (after film formation) was found to range from partially exfoliated to intercalated structure depending on the percentage of PS‐MMT loading. The impact of the modified clay loading on the monomer conversion, the polymer molecular weight, the thermal stability and the thermomechanical properties of the final PS‐nanocomposites was determined. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
The properties of hybrid multiwall carbon nanotube (MWCNT) and carbon black (CB) in natural rubber nanocomposites were studied. The results show that the scorch and cure time decreased as the MWCNT loading increased in CB/MWCNT hybrid loading ratio but for the maximum torque, the result shown otherwise. As the MWCNT loading increased in CB/MWCNT hybrid loading ratio, the tensile strength, elongation at break and fatigue life are decrease, however the tensile modulus and rubber filler-interaction (Qf/Qg) value increased. The SEM results show a dispersion of CB and MWCNT in natural rubber matrix. Furthermore, the thermal stability for the hybrid nanocomposites is enhanced.  相似文献   

16.
Halloysite nanotubes (HNTs)-filled natural rubber (NR) nanocomposites with various filler loading were prepared by using a two-roll mill. The addition of HNTs increased the scorch time, cure time and maximum torque but reduced curing rate index. The tensile strength increased up to 20 phr of HNTs and then decreased. When HNTs loading increased, the elongations of break, swelling percentage and fatigue life were decreased while modulus at 100% and 300% elongation and thermal properties showed inversely. The dispersion of HNTs inside the NR matrix is shown from SEM images.  相似文献   

17.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
In this article, poly(ester ether) multiblock copolymer/organomontmorillonite hybrid nanocomposites were prepared via an intercalation polymerization process. The resulting hybrid nanocomposites were characterized by X‐ray diffraction, differential scanning calorimeter, and transmission electron microscopy. The results proved that the organomontmorillonite (organo‐MMT) could be exfoliated into ~ 50‐nm thickness and dispersed in the poly(ester ether) multiblock copolymer (TPEE) matrix during the intercalation polymerization process. TPEE/organo‐MMT nanocomposites showed excellent mechanical properties compared with the unfilled TPEE. When the organo‐MMT content was about 3–5 wt %, MMT could enhance the strength, modulus, and hardness of TPEE without sacrificing its elongation at break. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1716–1720, 2002; DOI 10.1002/app.10552  相似文献   

19.
研究了3种多元醇--丙三醇(Gly)、三羟甲基丙烷(TMP)和季戊四醇(PER)对共聚型氯醚橡胶(ECO)硫化特性、交联密度、力学性能的影响。结果表明,添加丙三醇的胶料的焦烧时间与正硫化时间最短,交联密度最大,力学性能最好。丙三醇用量为2 phr、炭黑用量为40 phr时胶料的拉伸强度达14.1 MPa,扯断伸长率达685%,300%定伸应力达6.8 MPa,硬度为63。  相似文献   

20.
A novel rubber filler, black liquor–montmorillonite complex (BL–MMT) was prepared by dehydration of a mixture of MMT and BL and used in the preparation of acrylonitrile butadiene rubber (NBR) composites by mechanical mixing method. The BL–MMT/rubber composites were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). Experimental results of XRD and TEM indicated that MMT was well‐dispersed in the rubber because of the presence of lignin. DSC, thermo‐oxidative aging measurements and TGA results demonstrated that the thermal properties of NBR were improved due to the addition of BL–MMT. The tensile properties including tensile strength, elongation at break, and modulus were also tested. All experimental results indicated that this BL–MMT complex could be an effective reinforcing agent in rubber for cost‐saving and environment benefits. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号