首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We demonstrate for the first time the feasibility in conducting the graft copolymerization of methylmethacrylate (MMA) with cellulose by the means of the reversible addition‐fragmentation chain transfer (RAFT) polymerization in an ionic liquid [1‐N‐butyl‐3‐methylimidazolium chloride] (BMIMCl). Cellulose was first converted to a macromolecular chain transfer agent to which MMA was grafted by RAFT in BMIMCl. The success of the occurrence of different reactions was validated by elemental analyses, Fourier transform infrared and nuclear magnetic resonance spectroscopies. The results demonstrate that the MMA polymer chains were grafted onto the cellulose while the use of the ionic liquid as a reaction medium enhanced the polymerization rate to a moderate extent. Gel permeation chromatography analysis of poly(MMA) chains cleaved from the cellulose by acidic hydrolysis indicated low polydispersity indices (ca. 1.3) that were consistent with the “living” nature of the RAFT. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The polymerization of 1,3‐dioxolane catalyzed by Maghnite‐H+; (Mag‐H+), a montmorillonite sheet silicate clay exchanged with protons, was investigated. The cationic ring‐opening polymerization of 1,3‐dioxolane was initiated by Mag‐H+ at different temperatures (20, 30, 50, and 70°C) in bulk and in a solvent (dichloromethane). The effects of the amount of Mag‐H+ and the temperature were studied. The polymerization rate and the average molecular weights increased with an increase in the temperature and the proportion of the catalyst. These results indicated the cationic nature of the polymerization and suggested that the polymerization was initiated by proton addition to the monomer from Mag‐H+. Moreover, we used a simple method, in one step in bulk and in solution at room temperature (20°C), to prepare a telechelic bismacromonomer: α,ω‐bisunsaturated poly(1,3‐dioxolane). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 78–82, 2006  相似文献   

3.
A well‐defined graft copolymer, polystyrene‐graft‐poly(methyl methacrylate), was synthesized in two steps. In the first step, styrene and p‐vinyl benzene sulfonyl chloride were copolymerized via reversible addition–fragmentation chain transfer polymerization (RAFT) in benzene at 60 °C with 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as a chain transfer agent and 2,2′‐azobis(isobutyronitrile) as an initiator. In the second step, poly[styrene‐cop‐(vinyl benzene sulfonyl chloride)] was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in toluene at 80 °C with CuCl as a catalyst and 2,2′‐bipyridine as a ligand. With sulfonyl chloride groups as the initiating sites for the ATRP of MMA, high initiation efficiencies were obtained. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
The redox system of ceric salt and α,ω‐dihydroxy poly(dimethylsiloxane) is used to polymerize vinyl monomers such as acrylonitrile and styrene to produce block copolymers. The concentration and type of α,ω‐dihydroxy poly(dimethylsiloxane) affects the yield and the molecular weight of the copolymers. The copolymers have about 20°C lower glass‐transition temperatures and much higher contact angle values than of the corresponding homopolymer of vinyl monomers, although the weight percent of α,ω‐dihydroxy poly(dimethylsiloxane) of the copolymers is in the range of 1–2%. © 2006 Wiley Periodicals Inc. J Appl Polym Sci 102: 2112–2116, 2006  相似文献   

5.
α,ω-Methacrylate-terminated poly(1,3-dioxolane)s (polyDXL) were synthesized by cationic ring-opening polymerization of DXL in the presence of methylene-bis(oxyethylmethacrylate) as transfer agent. If the initiator concentration is small compared with the transfer agent concentration, the molecular weights of the polymers are governed by the ratio of the reacted monomer to the reacted transfer agent. The α,ω-methacrylate-terminated polyDXLs obtained undergo free radical polymerization with formation of polyacetal networks. The properties of the networks as function of the molecular weight of the corresponding prepolymers are reported.  相似文献   

6.
7.
A series of polyurethane (PU) elastomers was prepared by the reaction of poly(?‐caprolactone) and 4,4′‐diphenylmethane diisocyanate, which was extended with a series of chain extenders (CEs) having 2–10 methylene units in their structure. The completion of the reaction was confirmed by Fourier transform infrared spectroscopy. The chemical structures of the synthesized PU samples were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy, and the thermal properties were determined by thermogravimetric analysis, DSC, and dynamic mechanical thermal analysis techniques. The mechanical properties were also studied and are discussed. The thermogravimetric analysis and DSC analysis showed that CE length had a considerable effect on the thermal properties of the prepared samples. The dynamic mechanical thermal analysis and damping peaks were also affected by the number of methylene units in the CE length. The elastomer extended with 1,2‐ethane diol exhibited optimum thermal properties, whereas the elastomer based on 1,10‐decane diol displayed the worst thermal properties. Tensile strength and elongation at break decreased with increasing CE length, whereas hardness showed the opposite trend. The glass‐transition temperature moved toward lower temperatures with increasing CE length. The decrease in the glass‐transition temperature and tensile properties were interpreted in terms of decreasing hard segments and increasing chain flexibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The alternating copolymerization of N‐phenyl maleimide (NPMI) with ethyl α‐ethylacrylate (EEA) by the reversible addition fragmentation chain‐transfer process was investigated. The monomer reactivity ratios were measured and r1 = 0.19 ± 0.03 for NPMI and r2 = 0.20 ± 0.04 for EEA. It was found that before about 45% of the comonomer conversion, the molecular weight of the copolymer increased with the conversion, the molecular weight distribution was rather narrow, and the molecular weight of the copolymer approached a constant value, irrespective of the length of the polymerization time. Electronic spin resonance determined that the radical signal disappeared quickly after the conversion of comonomer exceeded 45%, which may be attributed to the coupling termination of the propagating polymer chains with the EEA end with the intermediate radicals when the concentration of comonomers decreased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2376–2382, 2004  相似文献   

9.
Linear and star‐shaped poly(ε‐caprolactone) (PCL) block copolymers containing poly(meth)acrylate segments with glycidyl, 2‐(trimethylsilyloxy)ethyl and tert‐butyl pendant groups were synthesized using mono‐, di‐ and trifunctional PCL macroinitiators and appropriate (meth)acrylate monomers by controlled radical polymerization. The well‐defined structures with narrow molecular weight distributions indicate the coexistence of semi‐crystalline PCL and amorphous poly(meth)acrylic phases. The hydrophobic nature of the block copolymers can be easily converted to amphiphilic, which with biodegradable and biocompatible PCL segments are promising as polymeric carriers in drug delivery systems. © 2012 Society of Chemical Industry  相似文献   

10.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used successfully to synthesize temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm), poly(methacrylic acid) (PMAA), and their temperature‐responsive block copolymers. Detailed RAFT polymerization kinetics of the homopolymers was studied. PNIPAAm and PMAA homopolymerization showed living characteristics that include a linear relationship between M n and conversion, controlled molecular weights, and relatively narrow molecular weight distribution (PDI < 1.3). Furthermore, the homopolymers can be reactivated to produce block copolymers. The RAFT agent, carboxymethyl dithiobenzoate (CMDB), proved to control molecular weight and PDI. As the RAFT agent concentration increases, molecular weight and PDI decreased. However, CMDB showed evidence of having a relatively low chain transfer constant as well as degradation during polymerization. Solution of the block copolymers in phosphate buffered saline displayed temperature reversible characteristics at a lower critical solution temperature (LCST) transition of 31°C. A 5 wt % solution of the block copolymers form thermoreversible gels by a self‐assembly mechanism above the LCST. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1191–1201, 2006  相似文献   

11.
A series of novel hexene‐1–propylene random copolymers with isotactic sequence of propylene was synthesized with a MgCl2‐supported Cr(acac)3 catalyst. The molecular weight distribution of copolymers and homopolymers was considerably narrower than that of typical polyolefins produced by heterogeneous Ziegler–Natta catalysts. The crystallizability of the copolymers having a propylene‐unit content of more than 50 mol % drastically decreased with decreasing propylene‐unit content, and the copolymers with a propylene content of less than 50 mol % were completely amorphous. In the present novel type of random copolymers with crystallizable and noncrystallizable units, a single glass transition was observed between pure polypropylene and polyhexene‐1, and a major component was found to govern the final morphology and the mechanical characteristics. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2949–2954, 2004  相似文献   

12.
Poly(β‐amino ester) biodegradable hydrogels are common in biomedical applications because of their tunable properties and similarities to natural soft tissue. Previous work has shown property adjustments through the choice of monomers, the ratio between monomers and the addition of a crosslinking component. Here, we show that the reaction time for the creation of the macromer can affect the resulting hydrogel properties, and thus provides another method of tuning properties. Macromer was created through the reaction of isobutylamine with poly(ethylene glycol) diacrylate (n = 400). The reaction progress was analyzed using IR and GPC analysis. Hydrogels were created through UV photopolymerization from macromers synthesized for 24, 36, and 48 h. The degradation, compressive moduli, and swelling were measured in an aqueous solution. All showed significant differences between hydrogels of different macromer synthesis times. These differences likely stem from the incomplete macromer synthesis reaction and resulting PEG‐rich regions in hydrogels from shorter synthesis times. These regions will not readily degrade, but do increase the mechanical properties and extent of swelling. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
The quantitative syntheses of α‐bis and α,ω‐tetrakis tertiary diamine functionalized polymers by atom transfer radical polymerization (ATRP) methods are described. A tertiary diamine functionalized 1,1‐diphenylethylene derivative, 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1), was evaluated as a unimolecular tertiary diamine functionalized initiator precursor as well as a functionalizing agent in ATRP reactions. The ATRP of styrene, initiated by a new tertiary diamine functionalized initiator adduct (2), affords the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3). The tertiary diamine functionalized initiator adduct (2) was prepared in situ by the reaction of (1‐bromoethyl)benzene with 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) in the presence of a copper (I) bromide/2,2′‐bipyridyl catalyst system. The ATRP of styrene proceeded via a controlled free radical polymerization process to afford quantitative yields of the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene derivative (3) with predictable number‐average molecular weight (Mn) and narrow molecular weight distribution (Mw/Mn) in a high initiator efficiency reaction. The polymerization process was monitored by gas chromatography analysis. Quantitative yields of α,ω‐tetrakis(4‐dimethylaminophenyl) functionalized polystyrene (4) were obtained by a new post ATRP chain end modification reaction of α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3) with excess 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1). The tertiary diamine functionalized initiator precursor 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) and the different tertiary amine functionalized polymers were characterized by chromatography, spectroscopy and non‐aqueous titration measurements. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
(2S,3aR,7aS)‐Perhydroindolic acid, the key intermediate in the synthesis of trandolapril, and its trans‐isomers, were readily prepared. These proline‐like molecules are unique in that they contain a rigid bicyclic structure, with two hydrogen atoms trans to each other at the bridgehead carbon atoms. These molecules were used successfully as chiral organocatalysts in asymmetric domino Michael addition/cyclization reactions of aldehyde esters with β,γ‐unsaturated α‐keto esters. They proved to have excellent catalytic behavior, allowing for the synthesis of multi‐substituted, enantiomerically enriched hemiacetal esters. Under optimal conditions (using 10 mol% catalyst loading), a series of β,γ‐unsaturated α‐keto esters was examined with up to 99% de, ee and yield, respectively. Additionally, the enantiomerically enriched hemiacetal esters could be readily transformed into their corresponding bioactive pyrano[2,3‐b]pyrans (possessing a multi‐substituted bicyclic backbone).  相似文献   

16.
BACKGROUND: Poly(1,3‐cyclohexadiene) (PCHD) is of interest as a precursor for the synthesis of a new class of high‐performance hydrocarbon polymers. ω‐Functionalization of PCHD offers a new opportunity for the preparation of a variety of multifunctional PCHD derivatives. RESULTS: ω‐Functionalized PCHD containing a fluorenyl (or anthracenyl) group at the polymer chain end was successfully synthesized by post‐polymerization reaction of poly(1,3‐cyclohexadienyl)lithium (PCHDLi) with alkyl halides containing a fluorescent functional group. The degree of nucleophilicity of PCHDLi and the control of side reactions were very important factors to achieve a high conversion for the post‐polymerization reactions of PCHDLi. The ω‐functionalized PCHDs obtained exhibited strong photoluminescence and the wavelength of the fluorescence was adjustable by changing the structure of the ω‐functional group. CONCLUSION: ω‐Functionalized PCHD is a preferable precursor that can be utilized to obtain a new class of multifunctional hydrocarbon polymers containing six‐membered rings in the main chain. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
ω,ω-Diphenolpolystyrenes (6) can be synthesized in quantitative yields by reacting poly(styryl)lithium with 1,1-bis(4-t-butyldimethylsiloxyphenyl)ethylene (1), followed by methanol termination and hydrolysis with dilute acid. The initially formed 1,1-bis(4-t-butyldimethylsiloxyphenyl)alkyllithium can be reacted with additional styrene monomer to form a polystyrene internally substituted with two in-chain phenol groups after methanol termination and acid hydrolysis. The diphenol-substituted polystyrene condensation macromonomers have been characterized by end-group titration, size exclusion chromatography, thin-layer chromatography, and ultraviolet-visible, 1H and 13C NMR spectroscopy. Chain-extension reactions of 6 (Mn = 2.6 × 103g mol?1) with bis(trichloromethyl)carbonate produced the corresponding comb-type, branched polymer with estimated Mn(SEC, polystyrene standards) = 1.2 × 104g mol?1 and no detectable residual condensation macromonomer. The second order rate constants for the addition reaction of excess poly(styryl)lithium with 1 and with 1-(4-t-butyldimethylsiloxy-phenyl)-1-phenylethylene (3) have been estimated to be 1.7 × 10?3M?1/2S?1 and 3.2 × 10?3M?1/2S?1 respectively. A sigma value (σ) of ?0.46 has been estimated for the t-butyldimethylsiloxy substituent.  相似文献   

18.
Electrophilic alkylations of phenol/2,6‐dimethylphenol were performed with vinylidene‐terminated poly(1‐hexene)s using BF3·OEt2 catalyst. Vinylidene‐terminated poly(1‐hexene)s with Mn varying from 400 to 10000 were prepared by bulk polymerization of 1‐hexene at 50 to ?20 °C using Cp2ZrCl2/MAO catalysts. The phenol/2,6‐dimethylphenol‐terminated poly(1‐hexene)s was characterized by NMR (1H, 13C), UV, IR and vapor phase osmometer (VPO). The isomer distribution (ortho, para and ortho/para) was determined by 13P NMR using a phosphitylating reagent, namely 2‐chloro‐1,3,2‐dioxaphospholane. The number‐average degree of functionality (Fn) >0.9 with >95% para selectivity could be achieved using low‐molecular‐weight oligomers of poly(1‐hexene)s. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
The atom‐transfer radical polymerization (ATRP) of methyl methacrylate (MMA), using α,α′‐dichloroxylene as initiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst was successfully carried out under microwave irradiation (MI). The polymerization of MMA under MI showed linear first‐order rate plots, a linear increase of the number‐average molecular weight with conversion, and low polydispersities, which indicated that the ATRP of MMA was controlled. Using the same experimental conditions, the apparent rate constant (k) under MI (k = 7.6 × 10?4 s?1) was higher than that under conventional heating (k = 5.3 × 10?5 s?1). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2189–2195, 2004  相似文献   

20.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号