首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A three-dimensional copper metal-organic framework with the rare chabazite(CHA)topology namely FJI-Y11 has been constructed with flexibly carboxylic ligand 5,5'-[(1,4-phenylenebis(methylene))bis(oxy)]diisophthalic acid(H4L).FJI-Y11 exhibits high water stability with the pH range from 2 to 12 at temperature as high as 373 K.Importantly,FJI-Y11 also shows high efficiency of hydrogen isotope separation using dynamic column breakthrough experiments under atmospheric pressure at 77 K.Attributed to its excellent structural stability,FJI-Y11 possesses good regenerated performance and maintains high separation efficiency after three cycles of breakthrough experiments.  相似文献   

2.
Wu  Di  Zhao  Zhihui  Lu  Wei  Rogée  Lukas  Zeng  Longhui  Lin  Pei  Shi  Zhifeng  Tian  Yongtao  Li  Xinjian  Tsang  Yuen Hong 《Nano Research》2021,14(6):1973-1979

There is an emerging need for high-sensitivity solar-blind deep ultraviolet (DUV) photodetectors with an ultra-fast response speed. Although nanoscale devices based on Ga2O3 nanostructures have been developed, their practical applications are greatly limited by their slow response speed as well as low specific detectivity. Here, the successful fabrication of two-/three-dimensional (2D/3D) graphene (Gr)/PtSe2/β-Ga2O3 Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated. Benefitting from the high-quality 2D/3D Schottky junction, the vertically stacked structure, and the superior-quality transparent graphene electrode for effective carrier collection, the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W, a large on/off current ratio of ~ 105, along with an ultra-high ultraviolet (UV)/visible rejection ratio of 1.8 × 104. More importantly, it has an ultra-fast response time of 12 µs and a remarkable specific detectivity of ~ 1013 Jones. Finally, an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga2O3 Schottky junction photodetector, demonstrating its great potential application in DUV imaging systems.

  相似文献   

3.
Zhou  Jian  Dou  Yibo  He  Tao  Zhou  Awu  Kong  Xiang-Jing  Wu  Xue-Qian  Liu  Tongxin  Li  Jian-Rong 《Nano Research》2021,14(12):4548-4555

Enhancing electrocatalytic water splitting performance by modulating the intrinsic electronic structure is of great importance. Here, porous bimetallic oxide and chalcogenide nanosheets grown on carbon paper denoted as NiCo2X4/CP (X = O, S, and Se) are prepared to demonstrate how the anion components affect the electronic structures and thereby disclose the correlation between their intermediates interaction and catalytic activities. The experimental characterization and theoretical calculation demonstrate that Se and S substitution can promote the ratio of Co3+/Co2+ and thereby modulate the electronic structure accompanied with the upshift of d band centers, which not only enhance the inner conductivity but also regulate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H and hydroperoxy intermediates towards respective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, a full alkaline electrolyzer using NiCo2Se4/CP and NiCo2S4/CP as cathode and anode delivers a low voltage of 1.51 V at 10 mA·cm−2, which is comparable even superior to most transition metal-based electrolyzers.

  相似文献   

4.
Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation,breakthrough is still highly needed in the design and synthesis of wonderful non-precious-metal electrocatalyst.Herein,a nanovilli Ni2P electrode,which with superaerophobic and superhydropholic can significantly facilitate the mass and electron transfer was constructed via a facial morphology control strategy.Meanwhile,the substitution of sluggish oxygen evolution with urea oxidation,lowering the two-electrode cell voltage to only 1.48 volts to achieve a current density of 10 mA·cm-2.Thus,the as-constructed electrode achieves the operation of hydrogen generation by an AA battery.This work sheds new light on the exploration of other high-efficient electrocatalysts for hydrogen generation by using intermittent clean energy.  相似文献   

5.
Fu  Lin  Zhou  Wei  Wen  Ming  Wu  Qingsheng  Li  Weiying  Wu  Dandan  Zhu  Quanjing  Ran  Jiaqi  Ren  Panpan 《Nano Research》2021,14(12):4616-4624

In order to well arrange active sites and avoid byproducts, the reasonable structured carrier nanocatalyst plays a crucial role in high catalytic performance, but still remains a challenge. Herein, the layered CuNi-Cu2O/NiAlOx nanosheets have been constructed through hydrothermal synthesis followed by calcination and H2 reduction treatment process. The in-situ formed CuNi nanoalloys (NAs) and nano-Cu2O were evenly distributed on the bilateral surface of layered NiAlOx nanosheets. Based on the planar structure of nanosheet, the synergy between catalytic active CuNi NAs and photocatalytic active nano-Cu2O endows CuNi-Cu2O/NiAlOx nanosheets with rapid conversion efficiency for catalyzing p-nitrophenol (p-NP, 14 mg·L−1) to p-aminophenol (p-AP) in 32 s with the reaction rate constant k up to 0.1779 s−1, and no obvious performance decay can be observed even over 27 cycles. Moreover, high concentration of p-NP at 10 and 20 g·L−1 could be reduced to p-AP within 14 and 20 min, respectively. Such designed nanoalloy/bimetal-oxide heterostructure can provide a solution for rapid conversion of aminoaromatics from nitroaromatics wastewater even at a large concentration range.

  相似文献   

6.
Gong  Lanqian  Yang  Huan  Wang  Hongming  Qi  Ruijuan  Wang  Junlei  Chen  Shenghua  You  Bo  Dong  Zehua  Liu  Hongfang  Xia  Bao Yu 《Nano Research》2021,14(12):4528-4533

Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm−2. Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.

  相似文献   

7.
Sun  Xiuping  Wang  Lu  Li  Chuanchuan  Wang  Debao  Sikandar  Iqbal  Man  Ruxia  Tian  Fang  Qian  Yitai  Xu  Liqiang 《Nano Research》2021,14(12):4696-4703

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g−1 could be remained after 1,200 cycles at a current density of 100 mA·g−1. When applied as anode materials for SIBs, 300 mAh·g−1 could be retained after 300 cycles at 2 A·g−1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g−1, 120.3 mAh·g−1 could be preserved after 3,400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g−1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.

  相似文献   

8.
Pei  Yongfeng  Chen  Rui  Xu  Hang  He  Dong  Jiang  Changzhong  Li  Wenqing  Xiao  Xiangheng 《Nano Research》2021,14(6):1819-1839

In recent years, two-dimensional (2D) layered metal dichalcogenides (MDCs) have received enormous attention on account of their excellent optoelectronic properties. Especially, various MDCs can be constructed into vertical/lateral heterostructures with many novel optical and electrical properties, exhibiting great potential for the application in photodetectors. Therefore, the batch production of 2D MDCs and their heterostructures is crucial for the practical application. Recently, the vapour phase methods have been proved to be dependable for growing large-scale MDCs and related heterostructures with high quality. In this paper, we summarize the latest progress about the synthesis of 2D MDCs and their heterostructures by vapour phase methods. Particular focus is paid to the control of influence factors during the vapour phase growth process. Furthermore, the application of MDCs and their heterostructures in photodetectors with outstanding performance is also outlined. Finally, the challenges and prospects for the future application are presented.

  相似文献   

9.
Meng  Ling  Ren  Zhiyu  Zhou  Wei  Qu  Yang  Wang  Guofeng 《Nano Research》2017,10(1):295-304

An effective photocatalytic hydrogen production catalyst comprising MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous junction was confirmed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The as-prepared MgTiO3/MgTi2O5/TiO2 heterojunctions exhibited a very high photocatalytic hydrogen production activity (356.1 mol·g0.1gcat·h-1) and an apparent quantum efficiency (50.69% at 365 nm) that is about twice of that of bare TiO2 nanobelts (189.4 mol·g0.1gcat·h-1). Linear sweep voltage and transient photocurrent characterization as well as analysis of the electrochemical impedance spectra and Mott–Schottky plots revealed that the high photocatalytic performance is caused by the one-dimensional structure, which imparts excellent charge transportation characteristic, and the MgTiO3/MgTi2O5/TiO2 tri-phase heterojunction, which effectively drives the charge separation through the inherent electric field. This titanate-based tri-phase heterogeneous junction photocatalyst further enriches the catalyst system for photocatalytic hydrogen production.

  相似文献   

10.
Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources,low toxicity,easy synthesis and long cycle life.However,low Coulombic efficiency and limited specific capacity affect their applications.Here,cubic-phase TiP2O7is examined as anode materials,using in-situ/ex-situ characterization techniques.It is concluded that the redox reactions of Ti4+/Ti3+and Ti3+/Ti0consecutively occur during the discharge/charge processes,both of which are highly reversible.These reactions make the specific capacity of TiP2O7even higher than the case of TiO2 that only contains a simple anion,02-.Interestingly,Ti species participate only one of the redox reactions,due to the remarkable difference in local structures related to the sodiation process.The stable discharge/charge products in TiP2O7reduce the side reactions and improve the Coulombic efficiency as compared to T i02.These features make it a promising Ti-based anode for sodium ion batteries.Therefore,TiP2O7@C microflowers exhibit excellent electrochemical performances,?109 mAh·g-1after 10,000 cycles at 2 A·g-1,or 95.2 mAh·g-1at 10 A·g-1.The results demonstrate new opportunities for advanced Ti-based anodes in sodium ion batteries.  相似文献   

11.
In this paper,a dual-ligand design strategy is demonstrated to modulate the performance of the electronically conductive metalorganic frameworks(EC-MOFs)thin film with a spray layer-by-layer assembly method.The thin film not only can be precisely prepared in nanometer scale(20-70 nm),but also shows the pin-hole-free smooth surface.The high quality nano-film of 2,3,6,7,10,11-hexaiminotriphenylene(HITP)doped Cu-HHTP enables the precise modulation of the chemiresistive sensitivity and selectivity.Selectivity improvement over 220%were realized for benzene vs.NH3>as well as enhanced response and recovery properties.In addition,the selectivity of the EC-MOF thin film sensors toward other gases(e.g.triethylamine,methane,ethylbenzene,hydrogen,butanone,and acetone)vs.NH3 at room temperature is also discussed.  相似文献   

12.
Recently developed lead-free double perovskite nanocrystals(NCs)have been proposed for the possible application in solutionprocessed optoelectronic devices.However,the optoelectronic applications of double perovskite NCs have been hampered due to the structural and chemical instability in the presence of polar molecules.Here,we report a facile strategy for the synthesis and purification of Cs2AgBiBr6double perovskite NCs that remained stable even after washing with polar solvent.This is realized with our efficient colloidal route to synthesize Cs2AgBiBr6NCs that involve stable and strongly coordinated precursor such as silvertrioctyl phosphine complex together with bismuth neodecanoate,which leads to a significantly improved chemical and colloidal stability.Using layer-by-layer solid-state ligand exchange technique,a compact and crack-free thin film of Cs2AgBiBr6NCs were fabricated.Finally,perovskite solar cells consisting of Cs2AgBiBr6as an absorber layer were fabricated and tested.  相似文献   

13.
Wei  Xiujuan  Tang  Chunjuan  An  Qinyou  Yan  Mengyu  Wang  Xuanpeng  Hu  Ping  Cai  Xinyin  Mai  Liqiang 《Nano Research》2017,10(9):3202-3211

Sodium-ion batteries (SIBs) have great promise for sustainable and economical energy-storage applications. Nevertheless, it is a major challenge to develop anode materials with high capacity, high rate capability, and excellent cycling stability for them. In this study, FeSe2 clusters consisting of nanorods were synthesized by a facile hydrothermal method, and their sodium-storage properties were investigated with different electrolytes. The FeSe2 clusters delivered high electrochemical performance with an ether-based electrolyte in a voltage range of 0.5–2.9 V. A high discharge capacity of 515 mAh·g–1 was obtained after 400 cycles at 1 A·g–1, with a high initial columbic efficiency of 97.4%. Even at an ultrahigh rate of 35 A·g–1, a specific capacity of 128 mAh·g–1 was achieved. Using calculations, we revealed that the pseudocapacitance significantly contributed to the sodium-ion storage, especially at high current rates, leading to a high rate capability. The high comprehensive performance of the FeSe2 clusters makes them a promising anode material for SIBs.

  相似文献   

14.
Liu  Bingxu  Sun  Yinghui  Wu  Yonghuang  Liu  Kai  Ye  Huanyu  Li  Fangtao  Zhang  Limeng  Jiang  Yong  Wang  Rongming 《Nano Research》2021,14(4):982-991

Two-dimensional (2D) MoS2 with appealing physical properties is a promising candidate for next-generation electronic and optoelectronic devices, where the ultrathin MoS2 is usually laid on or gated by a dielectric oxide layer. The oxide/MoS2 interfaces widely existing in these devices have significant impacts on the carrier transport of the MoS2 channel by diverse interface interactions. Artificial design of the oxide/MoS2 interfaces would provide an effective way to break through the performance limit of the 2D devices but has yet been well explored. Here, we report a high-performance MoS2-based phototransistor with an enhanced photoresponse by interfacing few-layer MoS2 with an ultrathin TiO2 layer. The TiO2 is deposited on MoS2 through the oxidation of an e-beam-evaporated ultrathin Ti layer. Upon a visible-light illumination, the fabricated TiO2/MoS2 phototransistor exhibits a responsivity of up to 2,199 A/W at a gate voltage of 60 V and a detectivity of up to 1.67 × 1013 Jones at a zero-gate voltage under a power density of 23.2 µW/mm2. These values are 4.0 and 4.2 times those of the pure MoS2 phototransistor. The significantly enhanced photoresponse of TiO2/MoS2 device can be attributed to both interface charge transfer and photogating effects. Our results not only provide valuable insights into the interactions at TiO2/MoS2 interface, but also may inspire new approach to develop other novel optoelectronic devices based on 2D layered materials.

  相似文献   

15.
Ren  Yumei  Yu  Chengbing  Chen  Zhonghui  Xu  Yuxi 《Nano Research》2021,14(6):2023-2036

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

  相似文献   

16.
Acute kidney injury(AKI),has become the focus of increasing attention due to its high risk of death.The early diagnosis and treatment of AKI significantly reduce the risk of renal tissue damage and kidney dysfunction.However,the efficient early diagnosis and treatment approach for AKI remains a challenge.AKI screening via precise nanomaterial theranostics is a new alternative approach.This study summarizes the recent advances in functional nanomaterials in the early detection and treatment of AKI.The challenges and problems in the use of nanomaterials for AKI in clinical applications are also discussed.It is anticipated that highlighting these new advances will lay the foundation for further translational research on the promising application of nanomaterials for AKI.  相似文献   

17.
Wu  Xiangshui  Tao  Qiqi  Li  Da  Wang  Qilang  Zhang  Xiaoyan  Jin  Huile  Li  Jun  Wang  Shun  Xu  Xiangfan 《Nano Research》2021,14(12):4725-4731

Tellurene, probably one of the most promising two-dimensional (2D) system in the thermoelectric materials, displays ultra-low thermal conductivity. However, a linear thickness-dependent thermal conductivity of unique tellurium nanoribbons in this study reveals that unprecedently low thermal conductivity can be achieved via well-defined nanostructures of low-dimensional tellurium instead of pursuing dimension-reduced 2D tellurene. For thinnest tellurium nanoribbon with thickness of 144 nm, the thermal conductivity is only ∼1.88 ± 0.22 W·m−1·K−1 at room temperature. It’s a dramatic decrease (45%), compared with the well-annealed high-purity bulk tellurium. To be more specific, an expected thermal conductivity of tellurium nanoribbons is even lower than that of 2D tellurene, as a result of strong phonon-surface scattering. We have faith in low-dimensional tellurium in which the thermoelectric performance could realize further breakthrough.

  相似文献   

18.
Yang  Zhengkun  Wang  Xiaolin  Zhu  Mengzhao  Leng  Xinyan  Chen  Wenxing  Wang  Wenyu  Xu  Qian  Yang  Li-Ming  Wu  Yuen 《Nano Research》2021,14(12):4512-4519

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.

  相似文献   

19.
Inorganic perovskite lasers are of particular interest,with much recent work focusing on Fabry-P6rot cavity-forming nanowires.We demonstrate the direct observation of lasing from transverse electromagnetic(TEM)modes with a long coherence time-9.5ps in coupled CsPbBr3 quantum dots,which dispense with an external cavity resonator and show how the wavelength of the modes can be controlled via two independent tuning-mechanisms.Controlling the pump power allowed us tofine-tune the TEM mode structure to the emission wavelength,thus providing a degree of control over the properties of the lasing signal.The temperature-tuning provided an additional degree of control over the wavelength of the lasing peak,importantly,maintained a constant full width at half maximum(FWHM)over the entire tuning range without mode-hopping.  相似文献   

20.
Despite the unique properties of bismuth(Bi),there is a lack of two-dimensional(2D)heterostructures between Bi and other functional 2D materials.Here,a coherent strategy is reported to simultaneously synthesize rhombohedral phase Bi nanoflakes and bismuth oxychloride(BiOCI)nanosheets.The delicate balance between several reactions is mediated mainly for the reduction and chlorination in the chemical vapor transport(CVT)process.The Bi-BiOCI lateral heterostructures have been constructed via the coalescence of the two different 2D nanostructures.The characteristics of ambipolar conducting Bi and insulator-like BiOCI are elaborated by scanning microwave impedance microscopy(sMIM).This work demonstrates a way to construct a 2D Bi nanostructure in junction with its oxyhalide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号