首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于碳纸电极电化学快速合成聚苯胺纳米纤维   总被引:2,自引:0,他引:2  
利用碳纸电极,采用循环伏安法、恒电流法和恒电位法等电化学聚合法快速合成了高氯酸掺杂聚苯胺纳米纤维.利用电子显微镜、红外光谱和四探针测定仪等对聚苯胺的微观形貌结构、掺杂度和电导率进行了研究.用循环伏安法对聚苯胺的电化学特征进行了分析.研究发现,3种方法合成的聚苯胺均为纳米纤维状结构,长度达3μm,直径为50~150 nm.其中,循环伏安法合成的聚苯胺纳米纤维的均一性和电导率均优于其它2种方法,其电导率高达5.97 S/cm.另外,聚苯胺合成速率顺序为恒电流法>循环伏安法>恒电位法,且恒电流法合成的聚苯胺纳米纤维电极材料的放电比容量最大(578 F/g),电容性能最好.  相似文献   

2.
新型质子酸掺杂聚苯胺的合成及其电化学电容行为   总被引:5,自引:0,他引:5  
用化学氧化聚合法制得了草酸掺杂聚苯胺(H2C2O4-PANI)和柠檬酸掺杂聚苯胺(C6H8O7-PANI),并与盐酸掺杂聚苯胺(HCl-PANI)做了对比研究.用红外光谱(FT-IR)、X射线衍射(XRD)和透射电镜(TEM)对掺杂聚苯胺的结构和形貌进行了表征.用循环伏安,恒流充放电和交流阻抗测试对材料在1 mol/L HCl溶液中的电化学电容行为进行了研究.结果表明:3种酸掺杂的聚苯胺具有不同的空间结构,电化学性能也有差异.与盐酸和柠檬酸掺杂的聚苯胺相比,草酸掺杂制备的聚苯胺表现出更优良的电化学电容行为,单电极比电容可达670 F/g.  相似文献   

3.
化学氧化法制备聚苯胺/多壁碳纳米管复合材料(PANI/MWCNT),扫描电镜(SEM)、XRD及IR表征样品结构及形貌,电化学方法测定复合电极循环伏安曲线、恒流充放电曲线及电极交流阻抗.结果表明,PANI/MWCNT电极在1mol/L的Li2SO4溶液中具有较好电容性能,在电流密度为5mA/cm2时,比电容为412F/g.PANI/MWCNT电极较PANI电极有更好的大电流放电能力,50mA/cm2下复合电极的比电容仍达318F/g,为5mA/cm2时该电极比电容的77.2%,而PANI电极的比电容仅为其5mA/cm2时的56.2%.交流阻抗证明碳纳米管降低复合电极的电阻,显著提高大电流放电能力.  相似文献   

4.
王艳芝  何品刚 《应用化学》2009,26(6):702-706
以直立碳纳米管为基底,以pH=6.0的0.1mol/L Na2SO4 为底液,采用电化学沉积法在0.2 mol/L Mn(CH3COO)2溶液中制备了直立碳纳米管与二氧化锰复合材料。SEM测试结果表明复合材料表面呈现多孔状结构。通过循环伏安,恒流充放电,交流阻抗等电化学方法对复合材料修饰电极进行电容性质测试。实验结果表明,在1mol/L KCl 溶液中,0-0.6V(vs. 银/氯化银参比)电位窗口内此复合材料表现出优良的超电容性能。直立碳纳米管电极的比电容为16 F/g,在碳纳米管表面沉积上二氧化锰修饰层后,此复合材料电极的比电容增大至330 F/g,比电容量大幅提升近20倍。同时扫描200圈后,直立碳纳米管与二氧化锰复合材料的循环伏安曲线变化很小,说明其具有相当好的循环寿命和电容稳定性能。  相似文献   

5.
MnO2电沉积直立碳纳米管制备超级电容器   总被引:1,自引:1,他引:0  
以直立碳纳米管为基底,以pH=6.0的0.1 mol/L Na2SO4为底液,采用电化学沉积法在0.2 mol/L Mn(CH3COO)2溶液中制备了直立碳纳米管与MnO2复合材料. SEM测试结果表明,复合材料表面呈现多孔状结构. 通过循环伏安、恒流充放电、交流阻抗等电化学方法对复合材料修饰电极进行电容性质测试. 结果表明,在1 mol/L KCl溶液中,0~0.6 V(vs.Ag/AgCl参比)电位窗口内此复合材料表现出优良的超电容性能. 直立碳纳米管电极的比电容为16 F/g,在碳纳米管表面沉积上MnO2修饰层后,复合材料电极的比电容增大至330 F/g,比电容量大幅提升近20倍. 同时扫描200圈后,直立碳纳米管与MnO2复合材料的循环伏安曲线变化很小,具有相当好的循环寿命和电容稳定性能.  相似文献   

6.
采用原位聚合法合成聚苯胺(PAIN)及聚苯胺/炭气凝胶(PAIN/CA)复合材料,经过高温裂解制备含氮碳(NC)及含氮碳/炭气凝胶复合材料(NC/CA),再以KOH为活化剂对其进行活化,制备活化含氮碳(ANC)及活化含氮碳/炭气凝胶复合材料(ANC/CA)。采用扫描电镜、循环伏安、恒流充放电以及电化学阻抗等方法进行性能测试,结果表明,由于KOH的活化作用,含氮碳材料的粒径明显变小,其比电容值为138 F/g,高于未活化含氮碳材料(98 F/g),ANC/AC3复合材料电极的比电容值比ACA电极(88 F/g)高,达到127 F/g。  相似文献   

7.
采用水热法制备了三维石墨烯(3D-G),并以十八胺(ODA)为接枝剂对部分还原的氧化石墨烯进行氨基化处理,再利用原位聚合法在氨基化石墨烯表面生长聚苯胺,制备了十八胺功能化石墨烯/聚苯胺(G-ODA/PANI).对材料进行了结构表征、电化学性能分析和材料结构的比电容贡献分析.结果显示,电极材料的电容贡献大部分体现为材料的表面电容,G-ODA/PANI电极片在1 A/g电流密度时的比电容最高可达1080 F/g,是未功能化石墨烯/聚苯胺电极材料(G/PANI)的2.57倍,且循环稳定性也有很大的提高,循环10000周后的比容量保持率为90.8%,比G/PANI高9.6%.  相似文献   

8.
雒和明  杨鹏  赵霞  张建强 《应用化学》2013,30(1):99-106
以焦粉为原料,用HNO3预处理除灰,采用KOH浸渍-煅烧活化法制备焦粉活性炭(CPAC),通过场发射扫描电子显微镜、X射线衍射等表征其形貌,采用BET测试其比表面积、孔结构及孔径分布。初步考察了活化温度、活化时间等对焦粉活性炭电极材料电化学性能的影响。采用共沉淀法制备CPAC/Al-Ni(OH)2复合电极材料,通过恒电流充放电测试及循环伏安测试表征CPAC/Al-Ni(OH)2复合电极材料的电化学性能。结果表明,当活化温度为800℃、活化时间为3 h制得的焦粉活性炭电极材料的电化学性能最佳,比电容达到211 F/g。CPAC-800℃-3 h/Al-Ni(OH)2复合电极材料随Al掺杂量的增大呈现先增大后减小的趋势。在固定Al质量掺杂量为4%,炭镍质量比为1∶1时所得复合材料的比电容量最大:1173.6 F/g。恒电流充放电及循环伏安测试表明Al掺杂量为4%、炭镍比为1∶1的复合材料具有较好的电化学性能。  相似文献   

9.
不同掺杂酸对纤维聚苯胺电化学性能的影响   总被引:2,自引:0,他引:2  
采用界面聚合法通过不同质子酸掺杂分别制备了平均直径约为50,62,95nm的纤维聚苯胺。通过傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电镜(TEM)对其化学组成和微观形貌进行了表征,采用循环伏安、恒流充放电和交流阻抗研究了不同质子酸掺杂纤维聚苯胺的超级电容器电容行为,并利用X射线衍射(XRD)、氮气吸脱附及X射线光电子能谱(XPS)等方法对纤维聚苯胺的微观结构进行了深入研究。结果表明:高氯酸(HClO4)掺杂制备的聚苯胺在0.5A/g电流密度下的比容量可以达到397F/g,高于盐酸(HCl,334F/g)和樟脑磺酸(HCSA,383F/g)掺杂聚苯胺的测试结果,纤维的电化学性能主要受其规整度、孔隙率及掺杂度的影响。  相似文献   

10.
溶胶-凝胶-微波法制备阴阳离子同时掺杂型LixMn2OyFz   总被引:6,自引:0,他引:6  
以LNO3、L iF和MnNO3为原料,通过控制n(L i)/n(Mn)和掺F量,运用溶胶-凝胶-微波法在750℃下合成阴阳离子复合掺杂型L ixMn2OyFy电极材料。XRD和FTIR实验表明,适量的阴阳离子复合掺杂不改变材料的立方尖晶石结构;掺杂适量的锂可以改善材料的循环性能,而氟不但可以起到保持材料的比容量而且可以显著降低材料在高温条件使用时的容量损失;充放电和循环伏安实验均证明,L i1.06Mn2O4.034F0.10是较理想的电极材料。室温条件下,L i1.06Mn2O4.034F0.10首次放电比容量达到119mAh/g,循环20次后比容量仍保持在115mAh/g,在55℃使用时,材料20次的比容量损失率为5.6%  相似文献   

11.
以MnO2为氧化剂,采用乳液聚合法,用三种不同的磺酸型表面活性剂制备掺杂聚苯胺(PANI)。通过扫描电子显微镜(SEM)、傅里叶变换红外(FTIR)光谱以及X射线衍射(XRD)等手段对其结构及形貌进行表征;用所得的掺杂聚苯胺制作电极,组装成对称扣式超级电容器,用循环伏安法(CV)、电化学阻抗(EIS)和恒电流充放电技术进行电化学性能研究。结果表明,磺酸表面活性剂的引入有利于PANI纳米纤维的形成和分散,掺杂Nafion的PANI纤维直径在30-40 nm之间,纤维交织成多孔的疏松结构;当放电电流为0.1 A·g-1时,以PANI-Nafion、PANI-SDS(十二烷基磺酸钠)、PANI-SDBS(十二烷基苯磺酸钠)为电极材料的超级电容器比容量分别为385.3、359.7、401.6 F·g-1,均高于未掺杂PANI的比容量(235.8 F·g-1);其中, PANINafion的循环稳定性最好, 1000次循环后其比容量保持率高达70.7%。  相似文献   

12.
低温合成樟脑磺酸掺杂聚苯胺微管的电化学电容行为   总被引:1,自引:0,他引:1  
在低温条件下合成了长约为2-3 μm, 外径约为300-400 nm 的樟脑磺酸掺杂聚苯胺微管. 扫描电镜(SEM)和透射电镜(TEM)显示, 生成的聚苯胺微管管径受樟脑磺酸浓度的影响, 高浓度的掺杂剂有利于管状聚苯胺的形成. 采用交流阻抗、循环伏安、恒流充放电等测试技术对不同产物的电化学电容行为进行了研究, 结果表明, 苯胺单体与樟脑磺酸的摩尔比为1:1时所得掺杂态聚苯胺电极具有较好的循环稳定性, 单电极比电容达到522 F·g-1.  相似文献   

13.
通过真空抽滤的方法制备碳纳米管纸,并对其进行循环伏安电化学氧化处理.以该电化学氧化处理的碳纳米管(CV-CNT)纸为基体,采用电化学聚合沉积聚苯胺(PANI),随后吸附石墨烯(GR),制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯(CV-CNT/PANI/GR)复合纳米碳纸.该结构外层为GR,内层由PANI包裹的CNT形成网络骨架,充分发挥三者各自优势构建柔性电极材料.用场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)、拉曼光谱对其形貌与结构进行表征,并测试其电化学性能.研究发现:PANI呈纳米晶须状,并均匀包裹在CV-CNT表面;该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能.电流密度为0.5A·g-1时,比电容可达415F·g-1;20A·g-1时仍能保持106F·g-1的比电容.由于GR的保护作用,1000次循环之后较CV-CNT/PANI保持更高的有效比电容.该CV-CNT/PANI/GR复合碳纸展现出在高性能超级电容器柔性电极材料的潜在应用价值.  相似文献   

14.
以生物制剂肝素钠为掺杂剂,由自组装方法合成出平均粒径为100 nm的球状聚吡咯(PPy),用作超级电容器电极材料.透射电镜(TEM)、循环伏安、恒流充放电和电化学交流阻抗测试表明,肝素钠掺杂聚吡咯呈现较好的形貌和电容性质,在电流密度3 mA/cm2下充放电,单电极比电容达到338 F/g.  相似文献   

15.
聚苯胺/聚砜复合材料的制备及其超级电容性能   总被引:1,自引:0,他引:1  
通过化学聚合法,制备出盐酸掺杂聚苯胺(PANI),将其与聚砜(PSF)溶液混合,定量滴加到玻碳电极上制得PANI/PSF复合膜电极。 采用扫描电子显微镜、红外光谱以及X射线衍射对其结构和形貌进行表征。 根据循环伏安曲线、恒电流充放电曲线和电化学阻抗,研究了其作为电极的超级电容性能。 结果表明,多孔结构的PANI/PSF复合材料具有良好的电容性能,其比电容可达到497 F/g,并且该超级电容器具有较小的内阻和较好的循环稳定性。  相似文献   

16.
以掺氮空心碳球(N-HCS)为骨架,通过化学氧化聚合法制备了聚苯胺纳米刺/掺氮空心碳球复合材料(PANI/N-HCS),采用扫描电子显微镜、透射电子显微镜和红外光谱仪等对样品的形貌、结构等进行了表征. 采用循环伏安、计时电位和交流阻抗等方法在1 mol/L H2SO4水溶液中考察了材料的电化学性能. 结果表明,PANI/N-HCS具有良好的电化学性能,在0.5 A/g电流密度下,PANI/N-HCS的比电容达346 F/g;当电流密度为20 A/g时,PANI/N-HCS比电容值为228 F/g,电容保持率为66%;在5 A/g电流密度下,经1000次充放电循环后,电容保持率为76%.  相似文献   

17.
Multi-layered electrodes which consist of polyaniline (PANI)/manganese dioxide (MnO2)-multi-walled carbon nanotubes (MWNTs) are prepared as the electrode materials for supercapacitors. MnO2-MWNTs are made by the in situ direct coating method to deposit MnO2 onto MWNTs; the core/shell structure of multi-layered fibrous electrodes can also be obtained by PANI coating onto the MnO2-MWNTs. The effect of PANI coating on the electrochemical performance and cyclic stability of MnO2-MWNTs is investigated. From the cyclic voltammograms, the PANI/MnO2-MWNTs show remarkably enhanced specific capacitance and cycle stability compared to MnO2-MWNTs, where the highest specific capacitance (350 F/g) is obtained at a current density of 0.2 A/g for the PANI/MnO2-MWNTs as compared to 92 F/g for pristine MWNTs and 306 F/g for MnO2-MWNTs. This indicates that the improved electrochemical performance of PANI/MnO2-MWNTs is due to the enhanced electrical properties by nano-scale-coated MnO2 onto MWNTs and the PANI coating that leads to the increased cycle stability by delaying the dissolution of MnO2 during charge/discharge tests.  相似文献   

18.
MnO2/polyaniline/graphene composite as a supercapacitor electrode material was synthesized through an interfacial polymerization approach in the interface of oil/water phase. The as‐synthesized MPG is characterized by infrared spectroscopy, XRD, XPS, SEM and TEM, and its electrochemical performance is measured by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The 3D nanostructure of MPG and loose nanorod structure of polyaniline (PANI) coated with round MnO2 pellets could be clearly observed. The maximum energy density of MPG is 45.4 Wh/kg (at a power density of 67.8 kW/kg) and the highest power density is 229.2 kW/kg (at an energy density of 25.7 Wh/kg). The capacitance retentions after 500 cycles at the scan rate of 5 mV/s for MGP composite and PANI/graphene are 70.4% and 59.1%, respectively, and the capacitance values after 500 cycles are 158.4 F/g and 114.8 F/g, respectively. The improved performance of MPG is due to the 3D nanostructure, loose nanorod structure of PANI and stable support of graphene, which prevent the mechanical deformation effectively during the fast charge/discharge process and facilitate the diffusion of the electrolyte ions into the inner region of active materials. The composite material is very promising for the next generation of high‐performance supercapacitors electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号