首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interpenetrating polymer networks (IPNs) based on different ratios of modified bismaleimide (BMI) resin [BMI/2,2′‐diallylbisphenol A (DBA)] and cyanate ester (CE) (b10) have been synthesized via prepolymerization followed by thermal curing. A systematic study of both static and dynamic mechanical properties of the cured BMI/DBA–CE IPN resin systems was conducted through flexural, impact testing, and dynamic mechanical analysis (DMA). The static mechanical investigation shows that the flexural strength, flexural strain at break, and impact strength of the cured BMI/DBA–CE IPN resin systems are relatively lower than that calculated by rule of mixture of two individuals: BMI/DBA and b10. However, the flexural moduli of the IPN resin systems have more consistent features compared to that calculated by rule of mixture. Single damping peaks are detected for the cured BMI/DBA–CE IPN resin systems, which suggests a substantial degree of interpenetration between two networks. The damping peaks of the cured BMI/DBA–CE IPN resin systems do tend to become broader with increasing concentration of BMI/DBA, whereas the intensity of damping peaks of the IPN resin systems decreases. The obtained results not only provide insight information about the characteristic structures of these BMI/DBA‐–CE IPN resin systems, but also give guidelines for their applications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2000–2006, 2003  相似文献   

2.
Leather–epoxy interpenetrating polymer networks (IPNs) were synthesized; these IPNs have an approximate epoxy concentration of 25 wt %. The flexural and tensile moduli of the IPNs prepared are equivalent to those of the epoxy resin. The Izod impact energy and fracture toughness measured for the IPNs, however, exceed those attained by the epoxy resin alone by at least a factor of 4. The glass transition of leather–epoxy IPNs occurs over a wide temperature range, thus indicating that the IPN is an intimate admixture of the epoxy resin throughout the collagen matrix of the hide. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1224–1232, 2000  相似文献   

3.
4.
This study prepared an interpenetrating polymer network of bismaleimide and polybutylene adipate-based polyurethane-crosslinked epoxy (BMI/PU-EP IPN) using the simultaneous bulk polymerization technique. Infrared spectra analysis was also performed to identify the polyurethane-crosslinked epoxy (PU-EP). Also investigated herein were the mechanical properties including tensile strength, fracture energy, and Izod impact strength of various bismaleimide content in PU-EP matrix. In addition, differential scanning calorimetry and thermogravimetric analyses of the BMI/PU-EP IPN were conducted as well. Analyses results demonstrate that the bismaleimide was dissolved primarily in the polyurethane domains of the epoxy matrix to form a compatible system, thereby increasing the mechanical strength of the BMI/PU-EP IPNs. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 529–536, 1998  相似文献   

5.
The mechanical properties of blocked polyurethane(PU)/epoxy interpenetrating polymer networks (IPNs) were studied by means of their static and damping properties. The studies of static mechanical properties of IPNs are based on tensile properties, flexural properties, hardness, and impact method. Results show that the tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs decreased with increase in blocked PU content. The impact strength of IPNs increased with increase in blocked PU content. It shows that the tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (CaCO3) content to a maximum value at 5, 10, 20, and 25 phr, respectively, and then decreased. The higher the filler content, the greater the hardness of IPNs and the lower the notched Izod impact strength of IPNs. The glass transition temperatures (Tg) of IPNs were shifted inwardly compared with those of blocked PU and epoxy, which indicated that the blocked PU/epoxy IPNs showed excellent compatibility. Meanwhile, the Tg was shifted to a higher temperature with increasing filler (CaCO3) content. The dynamic storage modulus (E′) of IPNs increased with increase in epoxy and filler content. The higher the blocked PU content, the greater the swelling ratio of IPNs and the lower the density of IPNs. The higher the filler (CaCO3) content, the greater the density of IPNs, and the lower the swelling ratio of IPNs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1826–1832, 2006  相似文献   

6.
The morphologies and mechanical properties of thermoplastic-modified epoxy networks generated through the reaction-induced phase separation procedure were studied as a function of isothermal cure conditions. The selected model system was diglycidyl ether of bisphenol A cured with 4,4′-methylenebis [3-chloro,2,6-diethylaniline] in the presence of a nonfunctionalized polyetherimide. Appropriate precuring and postcuring schedules were selected. The precure temperature had a strong effect on final morphologies because it affected the viscosity of the system at the cloud point and the extent of the separation process. The morphologies generated are discussed in connection with phase separation mechanisms. The ratio of the height of the loss peaks corresponding to each phase was an appropriate parameter to qualitatively predict the shape of morphology and to determine if the system was phase-inverted or not. The fracture toughness, KIc was significantly improved only when bicontinuous or inverted structures were generated, resulting from the plastic drawing of the thermoplastic-rich phase. Before phase inversion, KIc was hardly higher than that of the neat matrix due to poor interfacial adhesion. Nevertheless, the thermoplastic-rich particles constitute obstacles to the propagation of the crack and contribute to the toughening of the material, measured through impact resistance measurements. The observation of fracture surfaces revealed the occurrence of microcracking and crack-pinning. Strain recovery experiments showed that particle-induced shear yielding of the matrix was present as well. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2433–2445, 1997  相似文献   

7.
The novel interpenetrating polymer networks (IPNs) based on cycloaliphatic epoxy resin (CER) containing cyclohexene oxide groups and tri-functional acrylate, trimethylol-1, 1, 1-propane trimethacrylate (TMPTMA) were synthesized. The formation of the IPNs was on-line monitored by means of polarizing optical microscope, time-resolved light scattering and Fourier transform infrared spectroscopy. The morphological and mechanical properties of the resultant IPNs were investigated and evaluated with scanning electron microscopy (SEM) and dynamical thermal mechanical analysis (DTMA), respectively. The on-line monitoring results showed that during the course of the IPNs formation, the TMPTMA component was cured more quickly than the CER component, leading to the formation of the sequential IPNs. During the early curing stage, there were the phase separation phenomena in the CER/TMPTMA system. The SEM results revealed that although there were some slight phase separation phenomena in the CER/TMPTMA system in the early curing stage, the resultant IPNs displayed the homogeneous structures and did not show the apparent phase separation morphology. The DTMA results revealed that the resulting IPNs exhibited rather higher modulus and denser cross-linking network structure than the neat CER system.  相似文献   

8.
Dynamic mechanical properties have been investigated for interpenetrating-network systems based on polyol-cured polyurethanes (PU) and 2 to 1 n-butyl acrylate-n-butyl methacrylate (Ac) networks. The systems were formed simultaneously (SIN) from all of the precursors and reactants for both networks in the same vessel, and sequentially (SIPN) by swelling a precured PU with the reactants that will form the Ac network. If the Ac network is formed after gelation of the PU, the IPNs are transparent and appear to have single T (tan δmax) between those of the homonetworks; visible-phase separation occurs if the Ac is intentionally polymerized prior to PU gelation. Damping curves were lower and broader and the T (tan δmax) and rubber moduli were higher for the SIN than for the SIPN systems. Up to 65 percent Ac, the T (tan δmax) data for both SIN and SIPN fit the Gordon-Taylor equation if a T (tan δmax) for the Ac homonetwork 7°C higher than observed is used, suggesting a higher crosslink density for the Ac network under these conditions. The differences in properties of the SIN and SIPN are assumed to be dependent on sample homogeneity and upon the presence of a tin catalyst in the SIN preparation. This can result in limited Ac-network formation and consequent phase separation before PU gelation has occurred, and the catalyst may also increase the extent of interaction, such as grafting or hydrogen-bond formation between the networks.  相似文献   

9.
EA/St-AN互穿聚合物网络的加工和力学性能   总被引:1,自引:1,他引:0  
以丙烯酸乙酯为软单体 ,苯乙烯和丙烯腈为硬单体 ,二乙烯基苯或三乙二醇双丙烯酸酯为交联剂 ,采用多步种子乳液聚合技术制备了半互穿和全互穿聚合物网络 ,研究了软、硬单体配比 ,交联剂用量 ,加工次数对共聚物流变行为、力学性能和结构形态的影响。结果表明 ,制备的半互穿和全互穿聚合物网络均可在适宜的条件下流动成型。如果配方选择适当 ,反复加工后力学性能基本不变  相似文献   

10.
Acrylate and methacrylate monomers were obtained by reacting vernonia oil, a naturally epoxidized oil, with acrylic or methacrylic acid. The highest conversion (85–98%) of epoxy groups was obtained when the reaction was performed with an excess of the carboxylic acid at 100–120°C. The acrylate and methacrylate monomers of vernonia oil were characterized by IR and NMR spectroscopy. These monomers were then cured by sunlight in the presence of benzophenone to produce transparent films. In addition, interpenetrating polymer neworks (IPNs) were prepared in a two‐step technique from the sunlight‐cured methacrylate of vernonia oil, as the elastomeric component, in combination with a cured epoxy resin (a bisphenol A–type resin). Dynamic mechanical analysis showed good compatibility between the networks of the two cured polymers. An IPN with a 1 : 1 composition of the two polymer components exhibited the properties of a reinforced elastomer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3835–3843, 2004  相似文献   

11.
Ductile thermoplastic N-phenylmaleimide-styrene copolymers (PMS) have been introduced into diglycidyl ether of bisphenol A (epoxy) by a simultaneous polymerization technique. The tensile strength and fracture toughness increased with increasing PMS content and reached a maximum value at a PMS/epoxy ratio of about 20/80 (w/w). The mechanical properties decreased significantly beyond that ratio, because of phase inversion.  相似文献   

12.
Compatible interpenetrating polymer networks (IPNs) based on diglycidyl ether of bisphenol A (DGEBA) and methacrylated diglycidyl ether of bisphenol A (MADGEBA) in weight ratios of 100/0, 75/25, 50/50, 25/75 and 0/100 were blended and cured simultaneously by using dicumyl peroxide (DICUP) and hexahydrophthalic anhydride (HHPA) as curing agents. Fourier transform infrared spectroscopy (FTIR) was employed to investigate the intermolecular interactions and functional group changes. Viscosity increases during crosslinking were examined with a Brookfield viscometer. Curing exothermic peaks were studied with differential scanning calorimetry (DSC). The gel fractions of various IPN compositions were measured with a Soxhlet extractor. Samples thus prepared were checked for their compatibility by measuring glass transitions with DSC and damping peaks with rheometric dynamic spectroscopy (RDS). Experimental results revealed that good compatibility between components induced a network interlock, which subsequently resulted in incomplete cure of the IPN materials. ©1997 SCI  相似文献   

13.
Alan C. Meeks 《Polymer》1974,15(10):675-681
Fracture and mechanical property data on a wide range of epoxy resin systems are presented. The extent to which toughening can be induced by heterophase rubber inclusions depends more on the curing agent used than on the resin component. The greatest improvements in toughness were obtained by rubber modification of epoxy resins cured with an anhydride. A preformed ABS polymer can be used to toughen many epoxy resin systems. With one major exception (where a large improvement was found) only small changes in tensile properties occur when small amounts of rubber are present.  相似文献   

14.
Interpenetrating polymer networks (IPNs) were prepared from polyurethane (PU)‐modified epoxy with different molecular weight of polyol and polyurethanes based on the mixture of polydiol and polytriol by a one‐shot method. Two types of PU‐modified epoxy: PU‐crosslinked epoxy and PU‐dangled epoxy were synthesized, and the effects of the different molecular weights of polyol in the PU‐modified epoxy/PU IPNs on the dynamic mechanical properties, morphology, and damping behavior were investigated. The results show that the damping ability is enhanced through the introduction of PU‐modified epoxy into the PU matrix to form the IPN structure. As the molecular weight of polyol in PU‐modified epoxy increases, the loss area (LA) of the two types of the IPNs increases. PU‐dangled epoxy/PU IPNs exhibit much higher damping property than that of the PU‐crosslinked epoxy/PU IPNs with 20 wt % of PU‐crosslinked epoxy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 328–335, 1999  相似文献   

15.
This investigation presents the synthesis of simultaneous interpenetrating polymer networks based on dimethacrylic/epoxy resins with or without polyhedral oligomeric silsesquioxane (POSS) via in situ polymerization. The curing behavior was studied using differential scanning calorimetry (DSC). The influence of the organic groups from the POSS cages on the curing kinetics of the IPNs was also studied by FT-IR spectrometry. The homogeneous phase structure of the cured IPN was proved by DMA tests. Additionally the integrity of the IPN was also demonstrated by thermal decomposition which occurs in one single step.  相似文献   

16.
The mechanical behavior of polyurethane-poly(methyl methacrylate) interpenetrating polymer networks (PUR/PAc IPN's) was investigated. Stress-strain and impact resistance measurements were made on IPN's with a variable PUR content. The effect of the degree of crosslinking of each network on the mechanical properties was also studied. It appears that only the ultimate elongation varies largely upon changing the crosslink degree. The results are interpreted in terms of the contribution of each network to the mechanical behavior, but also by the interpenetration of both components and by the phase continuity of the PAc network.  相似文献   

17.
The synthesis of an interpenetrating polymer network (IPN) combining a polyurethane methacrylate network (PUMA) and a silicone network is reported. The PUMA network is synthesized by UV-light cure. The silicone network is formed through a condensation between α, ω dihydroxy polydimethyl siloxane and γ-methacryloxypropyl trimethoxy silane (γ-MPS) as a cross-linking agent. The IPN is prepared by different mechanism: radical and condensation types. According to thermogravimetric analysis of the hybrid material, the thermal stability stayed unchanged but the kinetic of degradation changed. Tg decreased with increasing silica content. The thermal cure process under humid atmosphere influence properties just for PUMA/4.2%SiUV+T. Condensation between γ-MPS decreases the penetration depth from 158 to 82 μm and increases the mechanical glass transition temperature from 106 to 141 °C.  相似文献   

18.
通过共混法制备了聚氨酯(PU)/环氧树脂(EP)互穿网络聚合物(IPN),采用示差扫描量热法(DSC)和动态机械分析(DMA)对IPN形成过程中的固化反应动力学及产物IPN的相容性进行了研究,结果表明,m(PU)/m(EP)=10∶6的IPN体系的反应级数为0.95,表观活化能为169.23 kJ/mol;PU/EP IPN只有1个玻璃化转变温度,相容性好。  相似文献   

19.
The present work reports a new method of preparing semi‐interpenetrating polymer network (semi‐IPN) membranes through in situ polymerization of bismaleimide (BMI) within polysulfone (PSF). It was found that BMI could be polymerized at ambient conditions in the presence of a proton donor and PSF without the use of an initiator or a catalyst. Chemical structure characterization of these semi‐IPNs by Fourier transform infrared attenuated total reflection (FTIR‐ATR) revealed the possibility of imide cleavage and formation of amic acid when BMI polymerization was continued for a longer time while X‐ray photoelectron spectroscopy (XPS) revealed the protonation of imide nitrogen at shorter polymerization time. It was also found that size of thermoset BMI phase within the PSF thermoplastic has a significant impact on glass‐transition temperature of resulting semi‐IPN. By controlling the thermoset/thermoplastic phase separation of semi‐IPNs through dope composition and formation techniques, gas separation membranes with comparable selectivity and permeance that were up to 12 times higher than corresponding PSF membranes were formed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 369–379, 2006  相似文献   

20.
Summary Interpenetrating polymer networks (IPN's) of a combination of polyurethane (PU) and poly(styrene-co-acrylonitrile) (PSAN) were prepared by the simultaneous polymerization process. To observe the relative rate effect of the simultaneous polymerization, the polymerization kinetics of PU and PSAN were studied. The gel-times of PU and PSAN network were theoretically calculated, and three types of SIN's with different rates of network formation in each component were prepared for comparison. IPN's with Mc=3000 and Mc=4900 were prepared to observe the influence of the crosslink density. The glass transition behavior studied by the dynamic mechanical analysis showed larger shifts in Tg's in SIN's with similar gel-times and smaller Mc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号