首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1−xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor α-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature TC increases from 183 to 208 K, and the maximum magnetic entropy changes |ΔS| at the respective TC with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kg K for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1−xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher TC and the smaller hysteresis in comparison with those of the parent compound suggest that the La1−xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

3.
A series of [(Fe1−xCox)72Mo4B24]94Dy6 (x = 0.1, 0.2, 0.3, 0.4 and 0.5 at.%) bulk metallic glasses (BMGs) in rod geometries with critical diameter up to 3 mm were fabricated by copper mold casting method. This alloy system exhibited good thermal stability with high glass transition temperature (Tg) 860 K and crystallization temperature (Tx) 945 K. The addition of Co was found to be effective in adjusting the alloy composition deeper to eutectic, leading to lower liquidus temperature (Tl). The [(Fe0.8Co0.2)72Mo4B24]94Dy6 alloy showed the largest supercooled liquid region (ΔTx = Tx − Tg = 92 K), reduced glass transition temperature (Trg = Tg/Tl = 0.622) and gamma parameter (γ = Tx/(Tg + Tl) = 0.424) among the present system. Maximum compressive fracture strength of 3540 MPa and micro-Vickers hardness of 1185 kg/mm2 was achieved, resulting from the strong bonding structure among the alloy constituents. The alloy system possessed soft magnetic properties with high saturation magnetization of 56.61-61.78 A m2/kg and coercivity in the range of 222-264.2 A/m, which might be suitable for application in power electronics devices.  相似文献   

4.
In the present paper, DC magnetization investigation on the insulating nanocrystalline powder samples of Ti1−xMnxO2 (x = 0, 0.05, 0.10, and 0.15) prepared by simple chemical route is reported. Structural measurements revealed phase pure anatase structure of TiO2 when x ≤ 0.05 and a mixture of anatase and rutile TiO2 along with the signature of Mn3O4 phase for x > 0.05. Magnetic measurements exhibited the presence of ferromagnetic ordering at room temperature in samples having either small fraction of Mn or no Mn at all. This ferromagnetic signature is accompanied with paramagnetic contribution which is found to dominate with increase in Mn concentration. The Ti1−xMnxO2 sample having highest Mn concentration of x = 0.15 showed nearly paramagnetic behavior. However, at low temperatures, additional ferrimagnetic ordering arising due to Mn3O4 (TC = 42 K) is evidenced in the doped samples. Consistent with the XRD investigations, the isofield DC-magnetization measurements under field cooled and zero field cooled (FC-ZFC) histories corroborated the presence of Mn3O4 phase. Also, distinct thermomagnetic irreversibility has been observed above 42 K. These results are suggestive of presence of weak ferromagnetic ordering possibly due to defects related with oxygen vacancies.  相似文献   

5.
Superconductors Ba1−xKxBiO3 and body-centered double perovskites Ba1−xKxBi1−yNayO3 have been selectively synthesized by a facile hydrothermal route. The appropriate ratio and adding sequence of initial reagents, alkalinity, reaction temperature and time are the critical factors that influence the crystal growth of the compounds. The purity and homogeneity of the crystals were detected by the ICP, SEM, EDX and TEM studies. Magnetic measurements show that the superconducting transition temperatures TC of Ba1−xKxBiO3 decrease from 22 K (for x = 0.35) to 8 K (for x = 0.55) with increasing the K doping level.  相似文献   

6.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

7.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

8.
A series of Mn50Ni50−xInx (x = 9.75, 10, 10.25, 10.5 10.75, and 11) ferromagnetic shape memory alloys with Mn content as high as 50 at.% were prepared. The martensitic transformation (MT), magnetocaloric effect, and magnetoresistance in Mn50Ni50−xInx alloys were investigated. With x increasing from 9.75 to 11, the MT temperature decreased from 270 to 110 K and the Curie temperature of austenite remains relatively constant. Large positive magnetic entropy change and negative magnetoresistance were observed around MT temperatures in these alloys. Large magnetic entropy change and magnetoresistance would be ascribed to the temperature and magnetic field-induced MT in Mn50Ni50−xInx alloys.  相似文献   

9.
Nanocrystalline Ni1−xMnxFe2O4 (x = 0; 0.17; 0.34; 0.5) ferrite powders were successfully synthesized using the sol-gel combustion method, by using nitrates as cations source and citric acid (C6H8O7) as combustion/chelating agent. The reaction advancement was observed by means of IR absorption spectroscopy, by monitoring two characteristic bands for the spinel compounds at about 600 cm−1 and 400 cm−1, respectively. The as-synthesized powders were characterized by IR spectroscopy, X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The magnetic study shows that the saturation magnetization decreases with increasing the Mn addition, as result of the particle size reduction. The dielectric properties were measured as a function of frequency in the range of 10 Hz to 1 MHz. The real part of permittivity has values of ∼88 at 1 kHz and ∼7 at 1 Hz for x = 0. An increasing dielectric permittivity with increasing the amount of Mn is observed. For all the investigated compositions, both the real and imaginary parts of permittivity decrease with frequency.  相似文献   

10.
Magnetic shape memory properties of polycrystalline Ni50Mn35In15−xSix were investigated. A reversible strain of more than 0.4% was observed for x = 0 at a magnetic field H = 5 T that was found to be associated with a field induced reverse martensitic transformation. The strains were found to increase with the substitution of In by Si and strains larger than 1% were observed for x = 2 at H = 5 T. Both the positive and negative strain changes were observed in the vicinity of martensitic transition temperatures. The strain in Ni50Mn35In15−xSix was found to depend on silicon concentration, and on samples texture.  相似文献   

11.
A series of Gd100−xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys were prepared by arc-melting. The Curie temperature (TC) associated with the ferromagnetic-paramagnetic transitions, derived from M-T curves, show decrease in TC for as-cast alloys (∼279 K) as compared to as-cast Gd (∼292 K). No appreciable decrease in the |ΔSM|max values ∼4.6 J/kg K (0-2 T) and ∼8.6 J/kg K (0-5 T) were observed upon alloying Gd with Mn up to x ≤ 15 at.%. Refrigerant capacity (q) showed negligible variation ∼195 J/kg (0-2 T) and ∼450 J/kg (0-5 T) with increasing Mn (up to x ≤ 15 at.%) content. Similar values of |ΔSM|max and q coupled with ∼13 K decrease in TC for as-cast Gd100−xMnx (0 ≤ x ≤ 15) alloys as compared to Gd, suggests expansion of working temperature region of Gd upon alloying with Mn up to 15 at.%. Low cost, adjustable TC, favorable magnetocaloric properties make Gd100−xMnx alloys potential candidates as second-order transition based magnetic refrigerants for near room temperature air-conditioning and magnetic refrigeration.  相似文献   

12.
The phase relation, microstructural, hysteresis, Curie temperature, and magnetocaloric effects of LaFe11.6Si1.4Bx (x = 0.1, 0.2, 0.3, 0.4, and 0.5) prepared by arc-melting and then annealed at 1373 K (1.5 h) + 1523 K (5 h) were investigated. It was found that the main phase is NaZn13-type phase, the impurity phases include α-Fe, Fe2B, and small amount of La5Si3. The boron atom can dissolve into the crystal lattice of LaFe11.6Si1.4Bx to form interstitial solid solution, but the content of solid solution is not up to x = 0.5. For LaFe11.6Si1.4Bx (x = 0.1, 0.3, and 0.5) compounds, the Curie temperature TC increases from 190.6 to 198.3 K with the increasing of B content from x = 0.1 to 0.5. The first order magnetic transition behavior becomes weaker and magnetic entropy change ΔSM (T, H) drops with the increasing of B content, respectively. However, ΔSM (T, H) still remains a large value, 11.18 J/kg K, when x reaches to 0.5 at 0-2 T. An attractive feature is that both thermal and magnetic hysteresis can be reduced remarkably by introducing B. The maximum magnetic hysteresis loss near TC drops from 22.52 to 4.95 J/kg when the content of B increases from x = 0.1 to 0.5.  相似文献   

13.
Multicomponent Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloy powders milled for 60 h were prepared by mechanical alloying (MA). The structure and crystallization behavior were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). Ni enhances the amorphisation of alloy powders. Particle size increases with increasing Ni content. Both onset crystallization temperature Tx and the first crystallization peak temperature Tp of the four alloys shift to a higher temperature with increasing heating rate while melting temperature (Tm) is just the opposite. Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloys all have a large supercooled liquid region ΔTx. The supercooled liquid region ΔTx increases and the crystallization activation energy E decreases with increasing Ni content.  相似文献   

14.
In this paper we report the temperature dependent electron spin resonance (ESR) and electrical resistivity studies of Bi(1−x)SrxMnO3 (x = 0.3, 0.4, 0.45, and 0.5). The double integrated (DI) intensity of the ESR signal vs temperature (T) and ln DI vs 1000/T plots have been used to get information about magnetic interactions in the sample. A sharp change in the slope of this plot indicates the onset of long range antiferromagnetic (AFM) order. The Neel temperatures (TN) of the sample increases with increase in Sr content. In the temperature range T > TN, domains of ferromagnetic (FM) and AFM correlations co-exist. The contributions of AFM correlations increase with the increase in Sr content. The observation of weak ESR signal in the temperature range below TN indicates the freezing of FM microdomains/inhomogeneities in the AFM long range ordered state. The resistivity (ρ) data are analyzed in view of polaron model and variable range hopping (VRH) models given by Mott and Efros-Shklovskii (ES). As per Motts VRH model, ln ρ varies linearly with T−1/4 with a change in slope at TN. The estimated values of hopping distance and localization length are reasonable. It is also found that ln ρ varies linearly with T−1/2 in accordance with the ES VRH model. However, the estimated values of the model parameters are unrealistic. The ESR and resistivity data are also analyzed in view of phase separation (PS) model.  相似文献   

15.
16.
Nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) manganites were prepared by a soft chemical method (Pechini method) followed by auto-combustion and sintering in air at 1073 or 1473 K. Single-phase powders with general composition Ca1−xSmxMnO3 were obtained after 18 h annealing. The particle and grain sizes of the substituted Sm-manganites did not exhibit variation with samarium content, but increase with increasing the sintering temperature. All manganites show two active IR vibrational modes near 400 and 600 cm−1 characteristic of the BO6 octahedron vibrations.For the samples sintered at Ts = 1473 K, the partial substitution of calcium by samarium in the CaMnO3 phase induces a marked decrease in the electrical resistivity, in the temperature range of 300-900 K, and at the same time a metal-to-insulator transition occurs; for Ts = 1073 K all the samples present semiconductor behaviour. With the increase of the annealing temperature the grain size increases and a metal-semiconductor transition appears. The results can be ascribed to the Mn4+/Mn3+ ratio and particle grain size. The effects of particle size on the electrical properties can be attributed to the domain status, changes in the Mn-O-Mn bond angle and Mn-O bond length.  相似文献   

17.
Ca2−xPrxMnO4 (0 ≤ x ≤ 0.2) polycrystalline ceramic powders were synthesized by sol-gel method. The X-ray diffraction (XRD) profiles were indexed with a tetragonal and orthorhombic structure for Ca2MnO4 and Pr-doped compounds, respectively. Electrical properties were investigated by dc and ac electrical measurements. The dc measurements have revealed an insulating state for all compounds in 80-350 K temperature range. Both dc and ac measurements have highlighted a charge ordering (CO) transition at TCO = 233 and 245 K for x = 0.175 and 0.2, respectively. The CO state was found to be accompanied by a jump of the hopping activation energy and a rapid rise of both dielectric permittivity and imaginary part of ac electrical impedance.  相似文献   

18.
X-ray diffraction and transmission electron microscopy measurements of melt-spun Gd100−xFex (0 ≤ x ≤ 40) and inert-gas condensed/compacted samples (3.8 ≤ x ≤ 12.7) reveal a structure of crystalline hcp-Gd grains surrounded by a non-crystalline Gd1−xeffFexeff phase, where xeff > x is the effective iron concentration within the amorphous region. The two-phase structure is responsible for an unusual dependence of the coercivity on temperature in which non-zero coercivity is observed above the hcp-Gd Tc with a peak near 320 K. The coercivity decreases as the hcp-Gd grains order, then increases with decreasing temperature. This behavior is explained by the presence of magnetically correlated Fe-rich regions.  相似文献   

19.
The crystallization process of bismuth substituted yttrium iron garnet (BixY3−xFe5O12; x = 0, 1, 2) powder prepared by the metal-organic decomposition method has been studied with various sintering temperatures. The pure garnet phase was observed for the x = 1 powder at 900 °C sintering temperature, whereas the x = 0, 2 powder showed secondary phases. The x = 0 powder showed a similar crystallization process to that of the solid state reaction method. For the x =1, 2 powders, it is proposed that the lowering of the crystallization temperature is due to the lowered stability of the intermediate phase. The infrared spectroscopy and magnetic properties were also investigated. The pure garnet phase showed three absorption bands located at 563, 598, 655 cm−1 that shifted to 555, 588, 639 cm−1 along with an increase of bismuth concentration. The maximum values of saturation and remanence magnetization and the minimum value of coercivity were observed for the x = 1 powder sintered at 900 °C, which were 20.8 emu/g, 2.67 emu/g, and 31.9 Oe, respectively.  相似文献   

20.
The PbSe1−xTex alloys with x = 0.2, 0.3, 0.5, 0.85 and 1.0 were prepared by induction melting, ball milling and spark plasma sintering techniques. The thermoelectric properties of the samples were investigated. The XRD analysis indicated that all samples are NaCl-type structure solid solutions Pb(Se,Te) containing nanograins. Increasing Te content resulted in increasing the lattice parameter a. The thermoelectric measurements show that all samples are n-type semiconductors in temperature range from 300 K to 673 K. The electrical resistivity of the doped sample is much smaller than that of pure PbSe, but comparable to that of PbTe. The absolute Seebeck coefficients for the doped sample PbSe1−xTex with x = 0.2, 0.3 and 0.5 range from 150 μV/K at 300 K to 250 μV/K at 673 K, which is much larger than that of pure PbSe (66-138 μV/K), but smaller than that of PbTe (230-310 μV/K) in the same experimental conditions. The thermal conductivity for the doped sample PbSe1−xTex with x = 0.2, 0.3 and 0.5 range from 0.95 to 0.66 W/m K, which is much smaller than that of pure PbSe (2.1-1.3 W/m K) or PbTe (1.4-1.1 W/m K). As a result, the figure of merit for the doped sample can be enhanced. The maximum dimensionless figure of merit ZT of 1.15 was obtained in the sample PbTe0.5Se0.5 at 573 K, more than 50% higher than that of pure PbTe prepared in the same condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号