首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
以正丙醇锆、硼酸、醋酸和D-果糖为原料, 采用溶胶-凝胶法, 结合高温碳热还原反应制备得到了长柱状单相ZrB2粉末。反应体系中, D-果糖不仅提供碳热还原反应的碳源, 同时作为化学修饰剂, 起到抑制正丙醇锆快速水解的作用。通过对比未陈化和陈化的凝胶制备得到的产物, 探讨了陈化过程对于ZrB2粉末制备的影响。结果表明, 凝胶陈化有利于ZrO2向ZrB2的完全转化。当起始原料满足n(B)/n(Zr) = 3.5~4, n(C)/n(Zr)= 7时, 采用室温陈化7 d的凝胶在1550℃保温2 h可获得长度为4~7 μm, 横截面等效直径约为1 μm, 长径比约为4~7, 比表面积为2.53 m2/g, D50 = 6.46 μm的单相长柱状ZrB2粉末。  相似文献   

2.
利用ZrO2-B2O3-C反应体系碳热还原的基本原理,分别使用正丙醇锆(Zr(OC3H7)4)、硼酸(H3BO3)和蔗糖(C12H22O11)为原料,采用溶胶-凝胶-碳热还原法合成了二硼化锆(ZrB2)纳米粉末。我们首先使用络合剂醋酸(AcOH)修饰Zr(OC3H7)4,以防止Zr(OC3H7)4的快速水解;其次,选用蔗糖作为碳源,是考虑到蔗糖热解时可以完全分解为碳,这样可以准确计算热解过程碳的生成量。此外,研究了凝胶温度对ZrB2纳米粉末形貌的影响。结果表明:当起始原料B/Zr(mol.)=2.3、热解温度为1 550℃时,通过碳热还原协同溶胶-凝胶法成功合成了单相ZrB2纳米粉末;当凝胶温度分别为65、75和85℃时,ZrB2纳米粉末形貌从球状演变为链状,最后生长为棒状,生长机理为定向吸附。  相似文献   

3.
混合锆类粉体是含有锆元素的无机陶瓷材料。采用溶胶-凝胶法与碳热还原法制备得到了ZrO2、ZrB2、ZrC、ZrN混合锆类陶瓷粉体,并利用连续上浆工艺将其涂覆到碳纤维表面。采用X射线衍射仪对锆类粉体进行了结构与组分的分析。通过扫描电子显微镜、热重测试研究了混合锆类粉体的加入对碳纤维表面形貌、耐热性能的影响。结果表明,实验条件下制备混合锆类粉体的最佳原料配比是n(Zr)∶n(B)∶n(C)=1∶2.5∶12,粉体的最佳烧结温度为1600℃,此时粉体中ZrB2含量相对最多;高模碳纤维经过10%粉体上浆改性后,碳纤维的起始氧化温度从675.1℃升高到了717.9℃,氧化反应的表观活化能从76.41kJ/mol升高到115.43kJ/mol。  相似文献   

4.
二氧化硅气凝胶以其低密度、高孔隙率等特性在高温隔热领域显示出广阔的应用前景, 但其脆性和高成本的超临界干燥方式限制了其应用。本研究以乙烯基三甲氧基硅烷(VTMS)和乙烯基甲基二甲氧基硅烷(VMDMS)为前驱体, 通过溶胶凝胶、常压干燥制备了具有高柔性的海绵状有机硅气凝胶, 并研究了前驱体摩尔比对气凝胶微观结构和压缩回弹性能的影响, 以及气凝胶分别在高温有氧和无氧环境中的无机化转变过程。结果表明, 随着前驱体中VTMS/VMDMS比例增加, 气凝胶颗粒变小且堆积更紧密, 其压缩回弹性能也随之降低; 在800 ℃空气氛围中, 气凝胶通过侧基的氧化和主链Si-O-Si的断裂、重排转化为无机SiO2; 在800 ℃ N2氛围中, 气凝胶通过裂解反应转化为无机SiO2和游离碳的混合体, 1000~1400 ℃进一步处理后SiO2和游离碳经碳热还原反应生成SiO4、SiCO3、SiC2O2和SiC3O等无定形的Si-O-C结构和少量β-SiC纳米线; 经1200 ℃碳热还原反应生成的Si-O-C结构具有最优的耐高温氧化性能, 可为制备耐高温氧化Si-O-C气凝胶提供参考。  相似文献   

5.
沉淀-喷雾干燥法制备纳米晶碳化硅粉体   总被引:1,自引:0,他引:1  
以廉价的水玻璃和炭黑为原料, 采用沉淀-喷雾干燥法制备反应前驱体, 经碳热还原合成碳化硅. 由于原料间混合均匀, 前驱体在1500℃下加热5h后就能实现完全反应. 对产物用XRD、IR、BET及SEM等进行了表征, 并对反应过程中温度、时间的影响进行了研究. 结果表明, 前驱体在1500℃下反应5h制得的产物为平均晶粒尺寸在37nm左右的β-SiC, 比表面积为12.4m2/g. 碳热还原过程中, 适当升高温度、缩短反应时间有利于得到高质量的SiC产物.  相似文献   

6.
以氧氯化锆(ZrOCl_2·8H_2O)和正硅酸乙酯(TEOS)为前驱体,四乙基溴化铵(TEAB)和N,N-二甲基甲酰胺(DMF)为模板剂,采用溶胶-凝胶法制备SiO_2/ZrO_2复合溶胶。通过正交试验和单因素试验考察陈化温度、模板剂、锆含量和乙醇对SiO_2/ZrO_2复合溶胶稳定性的影响。结果表明:陈化温度对溶胶稳定性影响较大,溶胶稳定性随着陈化温度的升高显著下降;其次是锆含量,溶胶稳定性随锆含量的增加先降低后缓慢上升,最低点处n(ZrOCl_2·8H_2O)∶n(ZrOCl_2·8H_2O+TEOS)=0.15。  相似文献   

7.
喻冲  周大利  郑卓  胡驰  刘松 《材料导报》2012,(Z1):77-79
以正硅酸乙酯和葡萄糖分别作Si源和C源,草酸和硼酸分别作催化剂,采用溶胶-凝胶法制备SiC前驱体,并采用碳热还原法制备纳米SiC。采用XRD、SEM对样品的物相和形貌进行表征。结果表明,用草酸作催化剂制备的前驱体在1550℃制备的SiC是颗粒与晶须的混合体,颗粒粒径为30~50nm,晶须长度为1~3μm,晶须直径为60~100nm;用硼酸作催化剂制备的前驱体其碳热还原温度显著降低,在1400℃就能制备出SiC颗粒与晶须的混合体,颗粒粒径为20~30nm,由于B加入后的抑制作用,SiC晶须的含量明显减少。  相似文献   

8.
磷灰石-硅灰石多孔玻璃陶瓷的制备与晶相结构研究   总被引:3,自引:2,他引:1  
采用溶胶-凝胶法制备磷灰石-硅灰石(AW)生物活性玻璃陶瓷纳米前驱体粉末,前驱体粉末经热处理后,采用有机泡沫漫渍成型,烧结制备了多孔AW生物活性玻璃陶瓷.通过差热和热重分析、X射线衍射分析、红外图谱分析、扫描电镜、透射电镜等分析测试方法,对AW前驱体粉末的微观结构,及其在煅烧过程中的晶相转变进行了研究,确定了制备纳米级AW前驱体粉的最佳工艺条件,推测出微晶玻璃体中各晶相的析出温度,确定了溶胶-凝胶法制备多孔AW玻璃陶瓷的煅烧工艺,体外模拟体液浸泡实验表明材料具有较高的矿化功能和生物活性.  相似文献   

9.
户永振  杨碧云 《功能材料》2015,(6):6120-6123
采用醇盐水解工艺结合碳热氮化还原法进行纳米Al N粉末的制备。以异丙醇铝、果糖、无水乙醇为原料,制备出透明的凝胶,干燥后得到分子水平混合的前驱体,在1 450℃经碳热氮化还原法制备出单相Al N纳米粉末。系统研究了前躯体形成机制,以及碳热氮化还原的温度和时间、C/Al摩尔比、凝胶温度等因素对合成粉体的影响。采用XRD、TG-DSC和SEM对合成产物的特性进行了分析和表征。通过优化工艺,制得类球形的Al N粉末颗粒,其颗粒大小为30~90 nm。  相似文献   

10.
采用燃烧还原合成技术, 以还原体系(B2O3 + ZrO2 + Al) 为反应体系制备了ZrB2 / Al2O3 复合粉体。利用X射线衍射(XRD) 、X 射线光电子能谱(XPS) 和透射电镜( TEM、HRTEM) 对复合粉体的物相组成、化学组成及界面结构进行了表征分析。结果表明, 复合粉体中存在Zr 、B、Al 和O 元素且它们分别以ZrB2 和Al2O3 为主要存在形式, ZrB2 和Al2O3 为复合粉体的主晶相。复合粉体中有少量ZrO2 的存在, 分析认为是合成反应过程中未参加反应的ZrO2 。ZrB2 和Al2O3 颗粒间形成了结合良好的界面, 这主要与ZrB2 的结晶过程有关。   相似文献   

11.
ZrB2-SiC基复合材料具有比单体ZrB2更优异的抗氧化性能及力学性能, 但其相对较低的韧性限制了其实际工程应用, 采用微结构设计或引入增韧相是改善陶瓷材料韧性的两个有效途径。本研究采用反应热压烧结工艺, 分别制备了具有独特片状ZrB2晶粒互锁结构的ZrB2-SiC复合材料和以短切碳纤维(Csf)为增韧相的Csf/ZrB2-SiC复合材料。对比研究发现, 晶粒互锁结构展现出优异的自强韧化效果, 使ZrB2-SiC复合材料具有较高的弯曲强度及断裂韧性, 但材料表现出典型的脆性断裂特征; Csf/ZrB2-SiC复合材料弯曲强度下降, 但Csf具有显著的增韧作用, 不仅使材料具有较高的断裂韧性, 而且临界裂纹尺寸及断裂功都得到显著提高, 从而表现出非灾难性破坏模式。  相似文献   

12.
High-purity zirconium diboride nano-powders were synthesized by carbothermal reduction reaction at a relatively low temperature from a novel sorbitol modified sol–gel method. Phase composition and morphology of the ZrB2 nano-powders were characterized by X-ray diffraction and transmission electron microscopy, respectively. The effect of sorbitol on sol–gel process and the formation mechanism of ZrB2 powders were investigated by fourier transform infrared spectroscopy and thermo gravimetric/differential thermal analysis. Sorbitol, used as bridging and chelating ligand, led to the formation of chelate complex through its polyhydroxy opening reaction with H3BO3, and then induced the condensation of zirconia forming Zr–O–C–B network, which promoted the carbothermal reduction reaction to complete at 1450 °C for 1 h. The synthesized powders exhibited near-spherical morphology with a small average crystalline size of about 100 nm. With respect to the conventional solid state method, the sorbitol modified sol–gel method route guaranteed a faster, easier and energy-saving process for obtaining single-phase nano-powders.  相似文献   

13.
TiN nanoparticles were prepared at 900–1100 °C by Ni-catalysed carbothermal reduction nitridation from sol-gel using tetrabutyl titanate, citric acid monohydrate and nickel chloride hexahydrate as starting materials. The catalytic effects of nickel on the carbothermal reduction nitridation of xerogels were investigated. Ni has a crucial promoting effect on the carbothermal reduction reaction of the xerogels and visibly enhanced carbothermal reduction and nitridation reactions. The dry gel with 5% NiCl2 was added to obtain nano-TiN at 900 °C. The transmission electron microscopy analysis and Materials Studio simulation results showed that the facilitating effect of Ni on carbothermal reduction nitridation reaction was ascribed to the provision of heterogeneous nucleation sites for amorphous titania, promoting crystallisation and adsorption of N2, resulting in its smooth dissociation into highly active N atoms and consequently enhancing the carbothermal reduction nitridation.  相似文献   

14.
To obtain the better ZrB2/Al(OH)3-Y(OH)3 core-shell composite particles, ZrB2 particles must be adequately dispersed during the coating process. In this article, the dispersibility of ZrB2 particles in the ZrB2 suspension is investigated via the sedimentation method. Through test and analysis, the dispersibility is rapidly increased with prolonging the ultrasonic dispersion time before 10 minutes. After 30 minutes, the sedimentation grads using ultrasonic dispersion basically reach the sedimentation balance, but the grads using mechanical agitating dispersion does not basically change after 5 minutes. The ultrasonic dispersion is one of more effective ways between ultrasonic and mechanical agitating dispersion, the dispersion time for 10 minutes is chosen in the dispersibility of ZrB2 particles via ultrasonic dispersion.  相似文献   

15.
等离子喷涂制备ZrB2-MoSi2复合涂层及其抗氧化性能   总被引:1,自引:0,他引:1  
采用喷雾干燥与真空烧结技术制备出不同MoSi2含量的ZrB2-MoSi2球形团聚粉末, 并以平均粒径为30 μm的ZrB2-MoSi2团聚粉末为原料, 利用大气等离子喷涂法在C/C复合材料表面制备包覆完整的ZrB2-MoSi2复合涂层, 借助XRD、SEM等对涂层的组织结构以及涂层的抗氧化性能进行了研究。结果表明: ZrB2-MoSi2涂层结构均匀致密, 结合强度达到7.2 MPa。适当含量的MoSi2, 可以提高涂层的抗高温氧化性能; ZrB2-40wt%MoSi2涂层C/C复合材料试样在1500℃静态空气中氧化9 h, 失重率仅为1.7%, 涂层具有良好的自愈合能力, 表现出优异的抗高温氧化性能。  相似文献   

16.
Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.  相似文献   

17.
二硼化锆(ZrB2)是一种应用于高超声速飞行器的新型防热材料, 近年来受到广泛关注。本研究根据ZrB2在不同温度下的氧化产物二氧化锆(ZrO2)与三氧化二硼(B2O3)的微观结构和形貌, 改进了原有的ZrB2氧化唯象模型, 研究了ZrB2的氧化行为, 提出了中等温度区间液态B2O3的生成、蒸发、填充的动态平衡关系, 并考虑了孔隙出口处的B2O3蒸气浓度。研究结果表明: 改进后的模型能够预测低流速准静态条件下ZrB2的氧化行为, 与加热炉中的样品恒温氧化测试结果吻合良好; 孔隙对氧化过程有较大影响, 在相同的温度、氧分压下, 孔隙率越大, 被氧化程度越高; 在基材表面存在B2O3液态膜的情况下, 扩散过程对氧化速率的控制被极大地降低, 材料表现出最强的抗氧化性能。  相似文献   

18.
Boron carbide (B4C) powder has been produced by carbothermal reduction of boric acid-citric acid gel. Initially a gel of boric acid-citric acid is prepared in an oven at 100°C. This gel is pyrolyzed in a high temperature furnace over a temperature range of 1000–1800 °C. The reaction initiation temperature range for B4C formation is determined by thermal analysis. The optimal pyrolysis temperature of B4C synthesis is investigated. During pyrolysis, the evaporation of boron-rich phases results in presence of free carbon in B4C powder. The electron micrographs and particle size analyser reveal the generation of fine B4C particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号