首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
对汽油加氢脱硫过程中辛烷值损失的主要因素进行了分析,并对脱硫与辛烷值损失的平衡提出了相应的操作措施。指出汽油加氢生产中,通过采取合理控制汽油加氢装置原料的烯烃含量、降低分馏塔回流比及重汽油烯烃含量,控制较低的反应温度,提高氢油比或循环氢纯度等措施,可以适当降低汽油加氢过程辛烷值损失。  相似文献   

2.
清洁汽油的生产   总被引:1,自引:0,他引:1  
介绍了我国清洁汽油生产的紧迫性及我国的汽油生产现状,重点阐述了当前国外汽油脱硫技术、降烯烃技术和其发展状况。通过发展催化重整技术,增加重整汽油调和组分,可有效地降低汽油中硫含量及改善汽油构成。同时,采用催化裂化脱硫、催化加氢脱硫、水蒸汽催化脱硫务吸附脱硫技术及各种脱烯烃等新技术,将有效减少汽油中硫化物和烯烃含量,以满足未来新配方汽油的更新换代及环保要求。  相似文献   

3.
为了降低催化汽油中的烯烃含量、硫含量,进行了催化汽油加氢精制加氢异构化的研究。结果表明.采用KT加氢异构化催化剂,通过加氢精制加氢异构化反应,液体产品收率在99%以上,脱硫率在80%以上,汽油的硫含量降到了50μg/g以下,汽油烯烃含量降低了7.25%,辛烷值损失0.8。  相似文献   

4.
针对汽油中硫及烯烃含量高、调和组分单一的现状,以欧洲Ⅲ汽油标准为指导原则,根据实际生产情况,优化催化裂化装置原料,使用降硫助剂和降烯烃催化剂,采用新技术新工艺,增加高标号调和组分.增建汽油加氢改质装置和吸附脱硫装置等一系列技术措施,使汽油产品质量指标满足GB17930—1999要求。  相似文献   

5.
催化裂化汽油选择性加氢脱硫工艺流程选择   总被引:5,自引:2,他引:3  
研究了催化裂化汽油加氢脱硫各种可能的加工流程。结果表明,将汽油切割成轻重馏分分别进行处理,可以大幅度减少汽油烯烃在加氢脱硫过程中的饱和;轻馏分汽油中硫醇可以通过碱抽提方式脱除,不影响汽油烯烃含量;由于汽油中的二烯烃在较缓和条件下能促进胶质的生成,需要进行选择性脱二烯烃;由于循环氢中的硫化氢对加氢脱硫反应有抑制作用、对烯烃饱和反应有促进作用,应增加循环氢脱硫化氢系统;产品中的硫醇可经固定床氧化脱除。根据催化裂化汽油原料特性、反应动力学及工业应用需要确定选择性加氢脱硫的工艺流程。  相似文献   

6.
分析了我国典型炼油厂FCC汽油硫含量和烯烃含量的变化情况,将MIP汽油[采用多产异构烷烃FCC工艺(Maximizing Iso-Paraffins)生产的汽油],与常规FCC汽油的性质进行了比较,介绍了用OCT-M技术(FCC汽油选择性加氢脱硫技术)对MIP汽油进行深度加氢脱硫的研究情况,包括加工方案的比较、反应压力的影响.结果表明,OCT-M FCC汽油选择性加氢脱硫技术可以将烯烃体积分数为31%的MIP汽油的硫质量分数由664 μg/g降低到50 μg/g以下,研究法辛烷值损失0.7~1.7,OCT-M技术能够为我国炼油厂由MIP汽油生产符合欧Ⅳ标准的清洁汽油提供灵活、经济的技术解决方案.  相似文献   

7.
综述了国内外催化裂化汽油降烯烃及加氢脱硫技术进展。通过优化操作条件及采用新工艺,对裂化反应、氢转移反应和异构化反应等进行控制与选择,可以明显降低汽油烯烃含量;加氢脱硫技术能够有效降低汽油硫含量,减少辛烷值损失。针对国内汽油质量现状,提出了优化技术方案,降低生产成本的建议。  相似文献   

8.
降低催化裂化汽油硫和烯烃含量的技术途径   总被引:14,自引:0,他引:14  
介绍几种降低催化裂化汽油硫及烯烃含量的技术途径,比较这些技术的使用范围及其优缺点。重点介绍国内已工业化的降低催化裂化汽油硫和烯烃含量的技术,包括加氢异构脱硫降烯烃(RIDOS)技术,多产异构烷烃的催化裂化新工艺(MIP)技术等。指出,前加氢法(催化裂化原料加氢预处理)具有诸多优点,但装置投资高,难以满足清洁汽油φ(烯烃)<20%的要求。催化裂化汽油后加氢法中,对于高硫、低烯烃原料,宜采用选择性加氢脱硫技术;对高硫、高烯烃原料,宜采用加氢异构脱硫降烯烃技术。催化裂化降烯烃新工艺、催化剂和助剂具有投资少,见效快等优点,但难以满足汽油φ(烯烃)<20%,ω(硫)<800μg/g的标准。催化裂化降烯烃技术与加氢技术的组合可能是我国生产新标准清洁汽油的适宜途径。  相似文献   

9.
李丽 《河南石油》2005,19(1):84-87
汽油中存在的烯烃、硫是造成环境污染的主要因素,降低汽油中的烯烃和硫含量有FCC工艺方法、加氢改质和利用催化剂以及助剂等方式。FCC降烯烃工艺技术,烯烃降低幅度大,但汽油收率低,柴油的十六烷下降;加氢技术可有效降低汽油烯烃和脱硫,但投资较高;利用FCC催化剂与助剂技术,依托FCC装置可有效地降低汽油烯烃和硫含量。  相似文献   

10.
催化裂化汽油脱硫降烯烃技术进展   总被引:1,自引:0,他引:1  
对催化裂化汽油脱硫降烯烃技术进展进行了综述.介绍了利用催化裂化工艺、催化剂和助剂的脱硫及降烯烃技术,以及催化裂化汽油的加氢脱硫降烯烃、吸附脱硫、氧化脱硫、膜法脱硫等技术进展.  相似文献   

11.
汽油升级的关键是降低汽油中硫含量。RSDS-Ⅱ选择性加氢脱硫技术在中国石油化工股份有限公司九江分公司成功地进行了工业应用。标定结果表明,该技术有良好的脱硫和控制烯烃饱和的能力,以硫质量分数为0.08%,烯烃体积分数为22%的催化裂化汽油为原料,脱硫率达95%,烯烃饱和率为25%,RON损失2,产品硫含量达到国Ⅲ汽油标准。RSDS-Ⅱ选择性加氢脱硫是生产低硫清洁汽油的重要技术。  相似文献   

12.
介绍针对催化裂化(FCC)汽油清洁化开发的深度加氢脱硫和烯烃定向转化相耦合的FCC汽油加氢改质GARDES技术的工艺配置、催化剂的设计理念、工业试验情况及满足国IV排放标准兼顾满足国V排放标准的清洁汽油的中试评价情况。工业试验标定结果表明:所得产品可作为满足国IV排放标准的清洁汽油调合组分,在烯烃体积分数降低16百分点的情况下,辛烷值损失为1.0个单位。对于不同硫含量FCC汽油的中试评价结果表明:在目标产品为满足国IV排放标准要求的清洁汽油调合组分时,脱硫率为69%~89%、辛烷值损失为0.3~0.5个单位;在目标产品为满足国V排放标准要求的清洁汽油调合组分时,脱硫率为88%~96%、辛烷值损失为0.7~0.9个单位。  相似文献   

13.
综述了国内外用于生产超低硫催化裂化汽油的加氢脱硫改质技术。简述了各种技术的工艺流程及特点,以及用于生产超低硫汽油的工业应用情况。分析了深度脱硫时,汽油产品硫含量与烯烃体积分数下降、辛烷值损失等之间的关系。对解决深度脱硫与保持辛烷值、汽油收率之间的矛盾提出了建议。  相似文献   

14.
随着环保法规的日益严格,降低催化裂化汽油烯烃含量具有重要的现实意义。基于负氢离子转移反应对双分子反应影响机理,提出选择性氢转移反应调控催化裂化汽油烯烃的新理念,发现富含芳香基环烷烃和多环环烷烃组分可以作为负氢离子释放剂,用于调控汽油烯烃含量并抑制焦炭生成。通过反应模式调控和引入负氢离子释放剂等技术创新,成功开发生产超低烯烃汽油的催化裂化技术(ULO)。工业应用结果表明,采用ULO技术可经一步法生产烯烃体积分数小于10%的稳定汽油,维持较高的汽油辛烷值和较低的焦炭选择性,并实现了轻循环油的高价值转化。  相似文献   

15.
石油化工科学研究院开发的石脑油非临氢改质技术在中国石化塔河分公司70kt/a石脑油异构化装置上的工业应用结果表明,加氢焦化石脑油非临氢改质处理后,可得RON为83.2、烯烃质量分数为1.83%的稳定汽油以及C_3~C_4烷烃质量分数为92.55%左右、烯烃质量分数低于10%的液化气,同时副产少量干气;稳定汽油和液化气的收率分别为71.38%和26.48%,达到了多产稳定汽油、少产液化气的目的。稳定汽油可作为品质优良的汽油调合组分,液化气脱硫后可作为车用液化气。  相似文献   

16.
清洁汽油生产技术进展   总被引:2,自引:0,他引:2  
介绍了国内外清洁汽油生产的进展,讨论了为满足新标准汽油生产可采用的汽油降烯烃技术、汽油脱硫技术和高辛烷值调合组分生产技术等,提出了改进工艺、优化汽油组分、提高汽油质量的建议。  相似文献   

17.
直馏汽油非临氢改质技术的应用与分析   总被引:1,自引:0,他引:1  
姚日远 《天然气与石油》2005,23(2):35-37,i002
介绍了扬州石油化工厂20kt/a的直馏汽油非临氢改质的工业应用情况,运行结果表明,该工艺具有改质汽油辛烷值高,烯烃含量低,干气产率低,总液收高的特点,是一种生产清洁环保汽油调和组分的新工艺。同时,提出了该工艺初期运行的实际问题,以便改进。  相似文献   

18.
介绍了CDOS-FRCNⅡ工艺技术生产超低硫汽油的优越性,该工艺省去了催化裂化汽油轻重馏分(LCN/HCN)切割过程,具有流程简单、操作灵活、投资省、耗能低的特点。该工艺配套的新型纳米钛基催化剂HDDO-100/HDOS-200/HDMS-100具有高脱硫活性、高选择性和稳定性,适用于全馏分加氢脱硫工艺,在处理高二烯烃、高烯烃含量的FCC汽油及DCC汽油中表现出优异的活性和稳定性,在新建的 500 kt/a DCC汽油加氢装置,采用CDOS-FRCNⅡ工艺技术及配套催化剂,实现了DCC汽油的产品升级,生产出符合国Ⅴ排放标准的汽油。  相似文献   

19.
活性炭吸附脱硫机理的硬软酸碱理论研究   总被引:4,自引:2,他引:2  
以噻吩为吸附脱除对象,分别以环己烷、正庚烷或正癸烷为烷烃的模型化合物,环己烯和甲苯为烯烃和芳烃的模型化合物,模拟流化催化裂化汽油的组分,配制模型汽油。考察了活性炭在过硫酸铵氧化处理前后,对含不同竞争吸附质的模型汽油中噻吩的吸附脱除性能,并采用量子化学方法计算得到噻吩和竞争吸附质的化学硬度,根据硬软酸碱理论分析了不同吸附质与噻吩竞争吸附作用的强弱。结果表明,化学硬度与噻吩差别较大的烷烃(环己烷、正庚烷和正癸烷)与噻吩的竞争吸附作用/不明显,而化学硬度与噻吩较接近的环己烯和甲苯则与噻吩的竞争吸附作用较强,特别是甲苯。氧化处理后的活性炭由于表面含氧基团的增加导致表面局部化学硬度改变,也是它对噻吩的吸附作用增强的原因之一。  相似文献   

20.
全馏分催化裂化汽油芳构化烷基化降烯烃技术的开发   总被引:22,自引:2,他引:20  
介绍了中国石油化工股份有限公司抚顺石油化工研究院和大连理工大学合作开发的催化裂化汽油烷基化、芳构化降烯烃技术(Olefin To Aromatics &Alkylate,简称OTA)。OTA技术对全馏分催化裂化汽油进行加氢改质处理,通过烃类烷基化、芳构化、异构化和少量裂化等烃类转化反应,使烯烃含量大幅度降低,同时产物的辛烷值损失较小,汽油收率高。试验结果表明OTA技术的催化裂化汽油质量脱硫率70%左右、烯烃体积饱和率60%-77%。汽油抗爆指数损失0-1.2、C5+汽油质量收率93.2%-97.9%、化学质量氢耗为0.11%-0.35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号