首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys   总被引:3,自引:0,他引:3  
Corrosion of Mg-Y alloys was studied using electrochemical evaluations, immersion tests and direct observations. There were two important effects. In 0.1 M NaCl, the corrosion rate increased with increasing Y content due to increasing amounts of the Y-containing intermetallic. In 0.1 M Na2SO4, the corrosion rate decreased with increasing Y content above 3%, attributed to a more protective surface film, despite the intermetallic. The corrosion rate evaluated by electrochemical impedance spectroscopy was somewhat smaller than that evaluated from H evolution as expected from the Mg corrosion mechanism. A mechanism is proposed for filiform corrosion. Direct in situ corrosion observations revealed that a predominant feature was hydrogen evolution from particular parts of the alloy surface.  相似文献   

2.
The influences of surface films formed by open-circuit exposure to neutral solutions on the corrosion and electrochemical behaviour of pure Mg and Mg alloys have been examined by in situ ellipsometric analysis and electrochemical measurements. Surface films mainly composed of Mg(OH)2 grew rapidly during open-circuit exposure to 0.1 M NaCl and 0.1 M Na2SO4 solutions. These films had protective ability to passivate Mg in the solutions. However, they suffered local breakdown under anodic polarisation. The passive current density decreased and the breakdown potential increased with increasing immersion time and film thickness. Influences of purity and alloying elements on the passivity and its breakdown of Mg have been discussed.  相似文献   

3.
The stress corrosion cracking (SCC) behaviour of 8090‐T8171 plate material was investigated in short transverse direction performing constant load tests and constant extension rate tests under permanent immersion conditions. At an applied stress of 100 MPa, smooth round tensile specimens were exposed to synthetic environments containing chlorides and various nonhalide anions. Environment‐induced cracking was not observed in aqueous solutions of 0.6 M NaCl, LiCl, NH4Cl, or MgCl2. In 0.6 M NaCl solutions containing 0.06 M Na2SO4 or Na3PO4, the SCC behaviour of 8090‐T8171 plate was similar to that observed in pure 0.6 M NaCl solution. Sodium chloride solutions with additions of nitrate, hydrogen carbonate, or carbonate promoted stress corrosion cracking. Threshold stresses below 100 MPa were obtained from constant load tests using the latter environments. When sodium sulfite or sodium hydrogen phosphate was added, values being 100 MPa or slightly higher were determined. Lithium and ammonium present as cations in mixed salt electrolytes accelerated SCC failure. Lithium chloride solutions containing nitrate, hydrogen carbonate, carbonate, or sulfite were highly conducive to stress corrosion cracking. Very low SCC resistance was found for alloy 8090‐T8171 exposed to synthetic environments with additions of ammonium salts. Constant extension rate tests were carried out using notched tensile specimens. Displacement rates were in the range 2 × 10?6 ? 2 × 10?5 mms?1. Aqueous 0.6 M NaCl solutions with additions of 0.06 M NH4HCO3, (NH4)2SO4, or Li2CO3 promoted environment‐induced cracking with 8090‐T8171 plate, as indicated by severe degradation of notch strength. The constant extension rate testing technique did not indicate SCC susceptibility using sodium chloride solutions containing sodium sulfate or lithium sulfate. For specimens exposed to substitute ocean water a slight degradation of notch strength was found at the lowest displacement rate applied.  相似文献   

4.
To explore the corrosion properties of magnesium alloys, the chemical behavior of a high strength Mg97Zn1Y2-1 wt.%Si C alloy in different corrosion environments was studied. Three solutions of 0.2 mol·L-1 NaCl, Na2SO4 and NaNO3 were selected as corrosion solutions. The microstructures, corrosion rate, corrosion potential, and mechanism were investigated qualitatively and quantitatively by optical microscopy(OM), scanning electron microscopy(SEM), immersion testing experiment, and electrochemical test. Microstructure observation shows that the Mg97 Zn1Y2-1 wt.%Si C alloy is composed of α-Mg matrix, LPSO(Mg12 ZnY) phase and Si C phase. The hydrogen evolution and electrochemical test results reflect that the Mg97Zn1Y2-1 wt.%SiC in 0.2 mol·L-1 Na Cl solution has the fastest corrosion rate, followed by Na2SO4 and NaNO3 solutions, and that the charge-transfer resistance presents the contrary trend and decreases in turn.  相似文献   

5.
A new Ce, Zr and Nb-based conversion coating was designed for AZ91 and AM50 magnesium alloys. The corrosion protection provided by this coating was evaluated by electrochemical measurements (polarization curves, electrochemical impedance spectroscopy) in Na2SO4 electrolyte, and accelerated atmospheric corrosion tests (humid, SO2 polluted air, and salt spray). Its chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). Electrochemical measurements showed that Mg alloys treated during 24 h in the Ce-Zr-Nb conversion bath exhibit: (i) increased corrosion potential, (ii) decreased corrosion and anodic dissolution current densities, and (iii) increased polarization and charge transfer resistances. The accelerated corrosion tests revealed excellent atmospheric corrosion resistance for all Ce-Zr-Nb-treated samples, with or without an additional layer of epoxy-polyamide resin lacquer or paint. XPS analysis showed that the coating includes CeO2, Ce2O3, ZrO2, Nb2O5, MgO, and MgF2 as main components. No significant modification of the chemical composition was observed after cathodic and anodic polarization in Na2SO4. This new coating provides improved corrosion resistance, and excellent paint adhesion. It offers an alternative to the chromate conversion coating for magnesium alloys.  相似文献   

6.
Electrochemical noise (EN) was used to investigate the corrosion behaviour of mild steel (Q235) in 0.1 M Na2SO4 and 0.1 M NaCl aqueous solutions during wet–dry cycles. The positive fraction and value of the Largest Lyapunov Exponent (LLE) of electrochemical current noise (ECN) were found out to represent the number and isolation degree of the pits formed in two electrolyte conditions. The calculated results indicate that metastable pits are more plentiful and uniformly distributed in wet cycles and in Na2SO4 solution than those in dry cycles and in NaCl solution respectively.  相似文献   

7.
Corrosion was evaluated for ultra-high-purity magnesium (Mg) immersed in 3.5% NaCl solution saturated with Mg(OH)2. The intrinsic corrosion rate measured with weight loss, PW = 0.25 ± 0.07 mm y−1, was slightly smaller than that for high-purity Mg. Some specimens had somewhat higher corrosion rates attributed to localised corrosion. The average corrosion rate measured from hydrogen evolution, PAH, was lower than that measured with weight loss, PW, attributed to dissolution of some hydrogen in the Mg specimen. The amount of dissolution under electrochemical control was a small amount of the total dissolution. A new hydride dissolution mechanism is suggested.  相似文献   

8.
Electrochemical studies have been performed with the atmospheric corrosion monitor (ACM) under thin layers of electrolyte which were drying out at R.H. < 100%. Galvanic couples (Cu/steel, Cu/zinc) and one-metal (steel, zinc) ACMs were used. Measurements were carried out as a function of R.H. and Na2SO4 concentration. In addition, weight loss data were collected under identical conditions in thin layer experiments for steel and zinc in 0.01N solutions of NaCl, Na2SO4, HCl, H2SO4 and distilled H2O in air, air + 1 ppm SO2, argon and argon + 1 ppm SO2. The data obtained in air and air + SO2 were compared to weight loss results in bulk solutions.The electrochemical technique makes it possible to follow the changes of corrosion rates with time. As observed in outdoor exposure, a large increase of corrosion rates occurs when the electrolyte layers become very thin, shortly before the surface dries out. These findings explain the results of the weight loss data which show for most environments a much larger corrosion rate than in the bulk electrolyte. An accelerating effect of SO2 was observed for steel at higher R.H. values, while for zinc, no effect occurred in NaCl, Na2SO4 and H2SO4, but an inhibiting effect was measured in HCl and in distilled H2O.Since weight loss and electrochemical data were recorded under identical conditions, it is possible to determine how accurately the ACM data reflect the true corrosion rate. It was found for Cu/steel ACMs that the electrochemical data follow the same trends as the weight loss data, but account for only about 20% of the corrosion rate. Due to larger scatter in the weight loss data, a similar efficiency factor could not be determined for Cu/zinc. For steel and zinc ACMs, the true Tafel slopes are not known, which makes a calculation of corrosion rates doubtful. The low cell efficiency is considered to be due to local corrosion of single cell plates and to i.r.-drop effects.Despite the fact that exact corrosion rates cannot, at present, be obtained from ACM data, the technique appears very valuable for following the changes of atmospheric corrosion behaviour and for time-of-wetness measurements.  相似文献   

9.
We report on the electrochemical performance of Mg-14Li-3Al-1Gd electrodes prepared by the accumulation roll bonding technique in a 0.7 M NaCl solution. To explore the effects of adding different concentrations of Na2SnO3 to 0.7 M NaCl solutions, potentiodynamic polarization, potentiostatic oxidation, electrochemical impedance spectroscopy, and scanning electron microscopy were utilized. The results show that the addition of Na2SnO3 to a 0.7 M NaCl solution increases the corrosion potential of the Mg-14Li-3Al-1Gd electrodes. Samples with 0.1 mM Na2SnO3 retained the highest discharging current density and lowest polarization resistance of all the specimens. Electrodes in an electrolyte solution mixed with 0.1 mM Na2SnO3 presented a larger active reaction area, deeper channels, and higher discharging currents than those with other additive concentrations. In conclusion, to improve the electrochemical behavior of Mg-14Li-3Al-1Gd electrodes in a 0.7 M NaCl solution, the optimal concentration of Na2SnO3 is 0.1 mM.  相似文献   

10.
The study of hydrogen permeation behavior in Armco-Fe showed that 0.1 M H2SO4 was a more effective medium for cathodic polarization compared to 0.1 M NaOH. When both electrolytes were “poisoned” with 1.00 g/L Na2HAsO4 · 7H2O, as hydrogen recombination inhibitor, the corresponding hydrogen permeation levels were 3.5 × 10−5 A/cm2 in 0.1 M H2SO4 while 0.75 × 10−5 A/cm2 in 0.1 M NaOH. The breakthrough times were less than 30 s in 0.1 M H2SO4, while about 100 s in the NaOH. With varying amounts of “poisons”, peak permeation of hydrogen (1.75 × 10−5 A/cm2) was achieved with 10 g/L Na2HAsO4 · 7H2O in 0.1 M H2SO4, while the least permeation resulted with 10 g/L (NH2CSH2) Thiourea addition for same level of 1.00 mA/cm2 cathodic polarization.  相似文献   

11.
The presence of metal ions (Cd2+, Mn2+, Zn2+), more electronegative than the cathodic potential for the hydrogen evolution reaction on iron in a 0.25M H2SO4 solution, inhibits the hydrogen evolution reaction and corrosion of iron. This effect has been explained as the under-potential deposition of the adatoms of these metals on iron.  相似文献   

12.
The dissolution of Mg has been investigated with atomic emission spectroelectrochemistry at open circuit and during potentiostatic control in chloride (NaCl) and sulfate (Na2SO4) electrolytes. A dissolution stoichiometry of approximately n = 2 is observed under all the conditions of these experiments with no evidence for the commonly invoked Mg+ intermediate. Nevertheless, in chloride electrolyte it is shown that anodic polarization results in a cathodic activation of the surface with increased hydrogen production during the polarization and an increased corrosion rate following the pulse. The formation of insoluble Mg oxides/hydroxides was also investigated in the sulfate electrolyte.  相似文献   

13.
Wang  C.-J.  Chang  Y.-C.  Su  Y.-H. 《Oxidation of Metals》2003,59(1-2):115-133
The high-temperature corrosion behavior of Fe-30.1Mn-9.7Al-0.77C alloy initially coated with 2 mg/cm2 NaCl/Na2SO4 (100/0, 75/25, 50/50, 25/75 and 0/100 wt.%) deposits has been studied at 750°C in air. The result shows that weight-gain kinetics in simple oxidation reveals a steady-state parabolic rate law after 3 hr, while the kinetics with salt deposits all display multi-stage growth rates. The corrosion morphology of the alloy with 100% Na2SO4 coating is similar to that of simple oxidation. NaCl acts as the predominant corrosion species for Fe-Mn-Al-C alloy, inhibiting the formation of a protective oxide scale. For the alloy coated with over 50% NaCl in salts, NaCl induces selective oxidation of manganese and results in the formation of secondary ferrite in the alloy substrate as well as void-layers with different densities of voids layer by layer in the secondary-ferrite zone.  相似文献   

14.
A first systematic investigation was carried out to understand the corrosion of common Mg alloys (Pure Mg, AZ31, AZ91, AM30, AM60, ZE41) exposed to interrupted salt spray. The corrosion rates were also evaluated for these alloys immersed in 3 wt.% NaCl by measuring hydrogen evolution and an attempt was made to estimate the corrosion rate using Tafel extrapolation of the cathodic branch of the polarisation curve. The corrosion of these alloys immersed in the 3 wt.% NaCl solution was controlled by the following factors: (i) the composition of the alpha-Mg matrix, (ii) the volume fraction of second phase and (iii) the electrochemical properties of the second phase. The Mg(OH)2 surface film on Mg alloys is probably formed by a precipitation reaction when the Mg2+ ion concentration at the corroding surface exceeds the solubility limit. Improvements are suggested to the interrupted salt spray testing; the ideal test cycle would be a salt spray of duration X min followed by a drying period of (120-X) min. Appropriate apparatus changes are suggested to achieve 20% RH rapidly within several minutes after the end of the salt spray and to maintain the RH at this level during the non-spray part of the cycle. The electrochemical measurements of the corrosion rate, based on the “corrosion current” at the free corrosion potential, did not agree with direct measurements evaluated from the evolved hydrogen, in agreement with other observations for Mg.  相似文献   

15.
Despite the development and subsequent improvement of new Mg-based alloys, their vulnerability to oxidation and corrosion continues to pose a major obstacle to their more generalized use. The possibility of blocking high diffusivity paths, such as grain boundaries, by ion implantation may help to improve their oxidation and corrosion resistance, because mass transport through these short circuiting paths is reduced.Electrochemical techniques were used to investigate the effect of Cr ion implantation in the electrochemical behaviour of Mg in aqueous solutions. In particular ion implanted fluences of 5 × 1016 and 5 × 1017 at./cm2 have been evaluated in solutions of NaCl, NaOH and Na2SO4.The corroded surfaces and products were analysed by ion beam analysis, scanning electron microscopy and X-ray diffraction. A model of the corrosion mechanism is proposed to explain the obtained results.  相似文献   

16.
Pitting corrosion and transpassive dissolution of 316 stainless steel in a solution containing five percent of commercial bleaching liquid was investigated by employing potentiodynamic polarization method and recording corrosion potential during immersion. Today commercial bleaching liquids are widely used as a cleaner additive. Therefore those house appliances made from stainless steels are in contact with aqueous solution containing bleaching liquid. This may cause severe localized corrosion and transpassive dissolution. In order to investigate the possibility of tranpassive dissolution of stainless steel by bleaching liquid, potentiodynamic polarization and recording the variation of corrosion potential of specimens were carried out in 0.2 M Na2SO4 solution containing 5%wt. commercial bleaching liquid. A 500 mV drop in transpassive potential and also instantaneously ennobled corrosion potential revealed the possibility of transpassive dissolution due to the oxidizing effect of the species such as free chlorine and its derivatives in bleaching liquid. Evaluation of the occurrence of localized corrosion at the presence of Cl? and bleaching liquid was investigated by similar electrochemical experiments in 0.2 M Na2SO4 + 0.4 M NaCl containing 5%wt. bleaching solution. Initiation of stable pitting at potentials lower than the transpassive potential as well as a sharp increase of the corrosion potential in this environment demonstrates the possibility of pitting corrosion.  相似文献   

17.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   

18.
The stress corrosion cracking behaviour of plate material of the aluminium alloys 2024‐T351, 8090‐T8171, 7475‐T651, and 7075‐T7351 was investigated performing constant load tests. Short transverse tensile specimens were permanently immersed in aerated aqueous 0.6 M Na2Cl solutions with additions of Na2SO4, NaNO3, NaHCO3, NH4HCO3, Na2HPO4, Na2SO3 or Na2CO3. The concentration of the added salts was 0.06 M. The applied stress was 100 MPa, except with 7075‐T7351 specimens, which were loaded at 300 MPa. Environment induced failure was not observed in neutral 0.6 M NaCl solution. The various salts added promoted intergranular stress corrosion cracking with the alloys 2024‐T351, 8090‐T8171, and 7475‐T651. Threshold stresses were generally below 100 MPa. For 8090‐T8171 exposed to chloride containing electrolytes with additions of sulfate, hydrogen phosphate, or sulfite, threshold stresses were approximately 100 MPa or higher. Similar results were obtained for 7475‐T651 plate when immersed in chloride‐hydrogen phosphate and chloride‐carbonate solutions. Alloy 7075‐T7351 was resistant against intergranular stress corrosion cracking. Specimens suffered pitting corrosion during immersion in the corrosive environments. Failure observed with 7075‐T7351, in particular when exposed to the chloride‐nitrate solution, was associated with reduction of cross‐sectional area due to pitting and transgranular stress corrosion cracking.  相似文献   

19.
A. Roy 《Corrosion Science》2007,49(6):2486-2496
The electrochemical response of Al94−xNi6Lax alloys (x = 4, 5, 6, 7) after different stages of devitrification was studied in 0.05 M Na2SO4 as well as in different concentrations [0.001 M, 0.01 M and 0.1 M] NaCl solutions. Complementary crystallization studies were carried out to elucidate the composition dependent phase evolution in these alloys. It was observed that the primary crystallization did not cause any deterioration in the corrosion resistance of the alloys as compared to the amorphous alloys. In the case of Al87Ni6La7, there was actually an improvement in the passivating ability in benign media. The various primary crystalline phases in the different alloys investigated did not cause different electrochemical responses. However, the onset of secondary crystallization caused a reduction in the corrosion resistance in the NaCl media through a loss in passivating ability of all the alloys. This is due to increased galvanic activity as well as the loss of the amorphous phase.  相似文献   

20.
The present work aims at studying the corrosion behavior of treatments based on the deposition of layers of metacryloxypropylmethoxysilane (MAOS) and/or cerium nitrate on aluminum alloy 2024 T-3 (AA2024-T3). The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS) during immersion in 0.1 M Na2SO4 and NaCl solutions. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were also used to perform a surface analysis before and after the treatments. The electrochemical results show that cerium nitrate, when present between two layers of MAOS (sandwich-type deposited layer), improves the corrosion resistance. This can be attributed to the presence of an internal layer rich in silicium and cerium and another external MAOS layer, which further improves the barrier effect of the layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号