首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Poly(propylene carbonate) (PPC)/poly(butylenes adipate-co-terephthalate) (PBAT) blends with various composition ratios were prepared via melt mixing using a twin-screw extruder. The effect of melt viscosities of polymers on mechanical behavior, interfacial interaction, thermal properties, rheological responses, and phase morphology was investigated. Results showed that the phase morphology and properties of PPC/PBAT blends were affected by the composition of the blends and the melt viscosities of the two polymers. Results of tensile tests, FTIR, and dynamic rheological measurement of PBAT-rich blends exhibited a better mechanical properties, intermolecular interactions, and compatibility when compared with PPC-rich blends due to the differences of their melt viscosities. Incorporating of PBAT effectively improved the Tg of PPC and the thermal stability of the blends. The Tc of PPC/PBAT blends markedly increased from 37.5 to 66.8 °C with addition of only 10 wt% PPC, indicating an enhanced crystallization ability of PBAT. The improvement of Tc was helpful for blown film extrusion. SEM microphotographs showed that the size of the dispersed phase particles is much smaller and the distribution is more uniform for PBAT-rich blends, compared with that in PPC-rich blends. The processing stability of blown film extrusion was improved by blending PPC with PBAT. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48924.  相似文献   

2.
In this study, we reported the preparation and prospective application of the nanocomposites of poly(butylene adipate‐co‐terephthalate) (PBAT) reinforced with cellulose nanocrystals (CNCs). CNCs were isolated from bleached sugarcane bagasse by acid hydrolysis and functionalized with adipic acid. Nanocomposites were prepared with different concentration of CNCs (0.8, 1.5, and 2.3 wt% CNC) by solution‐casting method and then were covered with silver thin film by magnetron sputtering. The results showed that the surface modification increased the degree of crystallinity of nanocrystals from 51% to 56%, decreasing their length and diameter. Moreover, AFM‐IR spectroscopy revealed that the modified CNCs were covered by adipic acid molecules, improving the dispersion of nanocrystals in PBAT. Well‐dispersed modified CNCs acted as heterogeneous nuclei for crystallization of PBAT, and increased the storage modulus of the polymer by more than 200%. These improvements in thermal and mechanical properties of CNC‐based PBAT associated with the decrease of 56% in the Escherichia coli biofilm formation on nanocomposites (antibacterial properties) qualify the CNC/PBAT nanocomposites covered with silver thin films to be used as food packaging. POLYM. ENG. SCI., 59:E356–E365, 2019. © 2019 Society of Plastics Engineers  相似文献   

3.
Traditional commodity polymers are widely used in several disposable or short‐life items and take hundreds of years to decompose in nature. These polymers could be replaced in several uses by biodegradable polymers, like polybutylene adipate‐co‐terephthalate (PBAT) studied in this work. For this, nonetheless, it is necessary to improve some of the PBAT properties, like mechanical resistance and barrier properties. In this work, cellulose nanocrystals (CNC) were incorporated in PBAT with this intention, through melt extrusion. Aiming to avoid CNC aggregation during the drying and extrusion process, a CNC chemical modification with phenylbutyl isocyanate was done. It was possible to obtain PBAT‐CNC melt extruded composites with an elastic modulus 55% higher and water vapor permeability 63% lower than the values of the pure polymer, without compromising PBAT biodegradation. Therefore, the composites prepared with these enhanced properties have great potential as substitutes for traditional commodity polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43678.  相似文献   

4.
The phase behavior and mechanical properties of a series of polyarylate/polycarbonate blends were studied. The polymers are known to transesterify, the extent of which depends upon the thermal and shear history and affects phase behavior and properties. Single screw extrusion, twin screw extrusion, and solution casting were employed for blend preparation. Two transition temperatures, corresponding to a polycarbonate-rich phase and to a polyarylate-rich phase, were seen in blends that were solution cast or compounded in a single screw extruder at 285°C. But after injection molding a single Tg was observed, When annealed at 180°C for several hours the molded blend was found to phase separate. Blends that were compounded in a twin screw extruder exhibited a single Tg and could not be phase separated. The flexural and tensile properties of blends that were prepared in a twin screw extruder show a small positive synergism. But the impact properties were substantially below the rule of mixtures values, probably the result of advanced exchange reaction and thermal degradation.  相似文献   

5.
Ethylene–propylene–diene terpolymer (EPDM) was modified by bromination reaction. Blending the resulting brominated EPDM with natural rubber (STR5L) and blending the unmodified EPDM with STR5L at various compositions were carried out. The rheological properties of the blends were investigated using a capillary extrusion. Shear flow curves of the pure rubbers and their blends illustrated the pseudoplastic property as shear thinning behavior with a power law index n < 1. True shear viscosity of all blends showed the negative deviation in relation to their additive values. Rheological behavior and two Tg's found from the DSC thermograms at all blend compositions indicated blend incompatibility for both sets of blends. The incompatibility of the vulcanized blends was also found by measuring the spin–spin relaxation time T2 by pulsed NMR. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 837–847, 2003  相似文献   

6.
Epoxy nanocomposites reinforced with 0–5 wt% cellulose nanocrystal (CNC) were fabricated by solution casting method. The CNCs were first dispersed in the hardener together with a co-solvent and subsequently mixed with epoxy monomer using two different protocols: bulk mixing and dropwise mixing. The dropwise mixing resulted in more homogeneously-dispersed CNCs and provided better mechanical properties, particularly higher tensile strength, tensile modulus, and work of fracture with increasing CNC content. Investigation of various CNC/hardener mixtures with different solvent content showed that the residual solvent in the composite mixture had an impact on the curing behavior of the nanocomposite epoxy and may have lowered its crosslinking density, leading to Tg depression. However, the presence of the solvent was shown to be essential for the preparation of a well-dispersed CNC phase in the hardener solution, and to form homogenous composite mixtures. Our results show that the reinforcement effect due to higher CNC concentration is more significant than the solvent effect in the hardener system and shows greater improvement in mechanical properties. The CNC component reversed the solvent plasticizing effect through its superior mechanical reinforcing effects, and the dropwise mixing process led to better dispersion compared with the bulk mixing process.  相似文献   

7.
Novatein is a thermoplastic polymer made from blood meal proteins, but it has rheological properties very different from commodity thermoplastics. Capillary rheometry revealed an apparent time dependent shear viscosity for Novatein, evident from a decreasing pressure drop over time, measured at constant shear rate. However, blending with polybutylene adipate-co-terephthalate (PBAT) reduced the time dependence for uncompatibilized blends and virtually eliminated time dependence for compatibilized blends containing 30 wt % PBAT. Novatein's extensional viscosity is three orders of magnitude more than its shear viscosity and explained the difficulty in sheet extrusion. In contrast, 30% compatibilized blends had an extensional viscosity similar to neat PBAT and was also the only blend that could be successfully sheet extruded. Although uncompatibilized blends at the same or lower PBAT content also had a lower extensional viscosity, they could not be sheet extruded and the difference was the 30% compatibilized blends had a fine PBAT phase structure (co-continuous in this case), which was sufficiently adhered to the Novatein phase. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47977.  相似文献   

8.
Cellulose nanocrystals (CNC) were successfully grafted with a low molecular weight poly(butylene glutarate) through an in situ polymerization procedure. The grafting treatment decreased the CNC hydrophilic character and increased the onset of their thermal degradation by approximately 20°C, thus increasing the possibilities of CNC application. Composites of grafted and nongrafted CNC with a poly(butylene‐adipate‐co‐terephthalate) (PBAT) matrix were prepared by melt extrusion. The CNC addition led to an increase of 50% of the tensile elastic modulus of the PBAT. In addition, dynamic mechanical thermal analysis showed that the composite with CNC retained its high modulus even at temperatures far above the glass transition temperature of PBAT. At 60°C the storage modulus of the composite with CNC was approximately 200% higher than that of the pure PBAT. Thus, in this work, nanocomposites of improved properties were obtained through a combination of in situ polymerization and melt extrusion. POLYM. ENG. SCI., 56:1339–1348, 2016. © 2016 Society of Plastics Engineers  相似文献   

9.
The enhanced maleic anhydride-end-capped poly(propylene carbonate)/starch blends were prepared through starch oxidization and modification with a coupling agent, aluminic ester. The interfacial interaction, rheological behavior, and properties of blends were investigated through Fourier transform infrared spectroscopy, rheological measurement, mechanical property test, differential scanning calorimetric, thermogravimetric analysis, and moisture absorption test. The results show that hydrogen-bonding interaction is formed between poly(propylene carbonate) and starch, which makes the tensile strength of maleic anhydride-end-capped poly(propylene carbonate)/starch blends improved significantly. The glass transition temperature (Tg) of blends is increased when coupling agent is induced into polymer system. When increasing the content of starch modified with coupling agent from 10 to 30%, Tg values for composites increased from 30.5 to 32.8°C. Thermogravimetric analysis results show that oxidation of starch can improve the thermal stability and modification of starch through aluminic ester that can further increase the thermal stability of maleic anhydride-end-capped poly(propylene carbonate)/starch blends. Oxidation of starch has no significant effect on moisture absorption for poly(propylene carbonate)/starch blends.  相似文献   

10.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

11.
This article concerns the utilization of maleated thermoplastic starch (MTPS) in the reactive extrusion melt‐blending with poly(butylene adipate‐co‐terephthalate) (PBAT) in blown film applications. First, MTPS was prepared from cornstarch with glycerol (plasticizer) and maleic anhydride (MA; esterification agent). MTPS was then melt‐blended with PBAT in a subsequent downstream extrusion operation. The effects of both polyester and MA contents were studied on the physicochemical parameters of melt‐blends. For high polyester fractions (>60 wt%), PBAT‐g‐MTPS graft copolymers were obtained through transesterification reactions. They were promoted by the MA‐derived acidic moieties grafted onto the starch backbone as shown by selective Soxhlet extraction experiments and FTIR analyses. At lower polyester content, no significant reaction occurred more likely due to an inversion in the phase morphology between both components. Tensile properties of PBAT‐g‐MTPS graft copolymer containing 70 wt% polyester were much higher as the TPS/PBAT melt‐blend modified with MA. This can be explained by a finer morphology of the dispersed phase in the continuous PBAT matrix, and an increased interfacial area for the grafting reaction as attested by morphological studies. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

12.
Blends of bisphenol-A polycarbonate (PC) with poly- (styrene-co-acrylonitrile) (SAN) and poly (acrylonitrile-butadiene-styrene) (ABS) prepared by screw extrusion and solution-casting were investigated by differential scanning calorimetry and scanning electron microscopy. From the measured glass-transition temperatures (Tg) and specific heat increments (ΔCp) at the Tg, SAN appears to dissolve more in the PC-rich phase than does PC in the SAN-rich phase. Also, the decrease of Tg (PC) in PC/ABS blends is larger than in the PC/SAN blends. From the Tg behavior and the electron microscopy study, it is suggested that the compatibility increases more in the SAN-rich compositions than in the PC-rich compositions of the blends. In the study of extrudate swell of the PC/SAN blends and the PC/ABS blends, the maximum level of extrudate swell is reached at 0.5 weight fraction of PC for both blend systems. The Flory-Huggins polymer-polymer interaction parameter (χ12) between PC and SAN was calculated and found to be 0.034 ± 0.004. A similar value of χ for PC and SAN was found with the PC/ABS blends.  相似文献   

13.
A series of biocomposites were developed by reinforcing agar particles from red marine plant Gelidium robustum into poly(butylene adipate‐co‐terephatalate) (PBAT) using extrusion and injection molding technique. The effect of different content of agar (0, 10, 20, 30, and 40 wt%) on the physico‐mechanical properties of the biocomposite was evaluated. The dynamic mechanical behavior of the composites was studied to determine the storage and loss modulus. The incorporation of agar particles into PBAT enhanced the tensile strength and modulus with a reduced percentage of elongation at break. A reduction in the mechanical loss factor (tan δ) was noticed with the addition of agar particles into PBAT. A reverse trend was noticed for storage and loss modulus. The thermogravimetric analysis revealed that the degradation temperature of PBAT‐agar composites lies in between that of their individual components (agar and PBAT). An increase in melting (Tm) and crystallization (Tc) temperature of the biocomposites were noticed as agar particle content increased. The rheological study carried out by dynamic frequency experiments demonstrated that viscosity is increased with the presence of agar particles. The morphology of the biocomposites was analyzed using scanning electron microscope. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
The miscibility between an acrylic copolymer and a tackifier resin was investigated in terms of phase diagrams, glass transition temperatures (Tg's), and dynamic mechanical properties of blends. Shear creep resistance (holding power, tb) of the blends was measured as a function of both temperature and stress (σ0) in order to obtain the master curves. It was found that the shear creep resistance of the pressure-sensitive adhesives (PSAs) was closely related to the miscibility between the components and viscoelastic properties of the blends. The master curve of the miscible blends shifts toward a longer time scale as the amount of tackifier resin in the blend is increased as a result of the modification of the bulk properties, and their behavior greatly depends on the glass transition temperature (Tg) and storage modulus (G′) of the blends. However, the master curve of immiscible blends where two phases exist in the system does not shift greatly toward a longer time scale, because Tg and the storage modulus of the blend do not change greatly. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The homogeneous grafting of acrylonitrile onto cellulose was carried out in a dimethyl sulfoxide/paraformaldehyde solvent system. The grafted products were added to cellulose/polyacrylonitrile (PAN) blends as compatibilizers. The thermal decomposition behavior of the blends was investigated by thermogravimetry. The thermal stability of the blends with higher grafted product content was lower by more than 100°C than that of the blends without grafted product. The accessibility values of the former blends were larger than those of the latter. The microphase-separated structures of the grafted product blends were finer than those without the product. Dynamic mechanical measurements and differential scanning calorimetry were performed to estimate the glass transition temperatures, Tg, of the blends. The variation in Tg was smaller than that in characteristic temperatures determined by thermogravimetry. The difference in thermal decomposition behavior was correlated to that in compatibility. Thermogravimetry was found to be effective for estimating the compatibility in cellulose/PAN blends containing grafted products. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Freeze‐dried cellulose nanocrystals (CNCs) were dispersed in the thermoplastic polyurethane [Pellethane 2363‐55D (P55D)] by a solvent casting method to fabricate CNC‐reinforced nanocomposites. This study demonstrated that the addition of small amounts (1–5 wt %) of CNCs to P55D increased the thermal degradation temperature while maintaining a similar stiffness, strength, and elongation of the neat P55D. CNC additions to P55D did not alter the glass‐transition temperature, but the onset decomposition temperature was shifted from 286 to 327°C when 1 wt % CNCs was dispersed in the matrix. The higher onset decomposition temperature was attributed to the formation of hydrogen bonds between the hydroxyl groups on the CNC surface and urethane groups in the hard block of P55D. The ultimate tensile strength and strain to failure (εf) of the nanocomposites were minimally affected by additions up to 5 wt % CNCs, whereas the elastic modulus was increased by about 70%. The observation that εf was unchanged with the addition of up to 5 wt % CNCs suggested that the flow/sliding of the hard blocks and chains were not hindered by the presence of the CNCs during plastic deformation. The ramifications of this study was that CNC additions resulted in wider processing temperatures of P55D for various biomedical devices while maintaining a similar stiffness, strength, and elongation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41970.  相似文献   

17.
A novel and simple surface modification of cellulose nanocrystals (CNC) was performed by chloroacetylation and subsequent reaction with tertiary amines to form quaternary ammonium modified CNCs. The acetylation of CNC and quaternary ammonium modified CNCs was confirmed using IR spectroscopy and solid state NMR spectroscopy. The 13C NMR spectrum of quaternary ammonium modified CNC showed several additional resonances ranging from 14.5 ppm to 58.0 ppm compared to 13C NMR spectrum of pure CNC, suggesting that alkyl chains have been added to the pure CNC. The disc diffusion method was used to evaluate the antimicrobial properties of quaternary ammonium modified CNCs. It was found that modified CNCs with alkyl chain longer than ten carbons are effective antimicrobial agents against Staphylococcus aureus and E. coli bacteria. These CNCs can be chemically modified to tailor the properties to improve dispersion in the polymer matrix. This will expand the application of CNC as a reinforcing material. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44789.  相似文献   

18.
The linear rheological properties of high‐density polyethylene (HDPE), polystyrene (PS), and HDPE/PS (80/20) blends were used to characterize their structural development during extrusion in the presence of ultrasonic oscillations. The master curves of the storage shear modulus (G′) and loss shear modulus (G″) at 200°C for HDPE, PS, and HDPE/PS (80/20) blends were constructed with time–temperature superposition, and their zero shear viscosity was determined from Cole–Cole plots of the out‐of‐phase viscous component of the dynamic complex viscosity (η″) versus the dynamic shear viscosity. The experimental results showed that ultrasonic oscillations during extrusion reduced G′ and G″ as well as the zero shear viscosity of HDPE and PS because of their mechanochemical degradation in the presence of ultrasonic oscillations; this was confirmed by molecular weight measurements. Ultrasonic oscillations increased the slopes of log G′ versus log G″ for HDPE and PS in the low‐frequency terminal zone because of the increase in their molecular weight distributions. The slopes of log G′ versus log G″ for HDPE/PS (80/20) blends and an emulsion model were used to characterize the ultrasonic enhancement of the compatibility of the blends. The results showed that ultrasonic oscillations could reduce the interfacial tension and enhance the compatibility of the blends, and this was consistent with our previous work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3153–3158, 2004  相似文献   

19.
Rheological behavior of reactively extruded starch–PCL nanocomposite blends was evaluated in an off‐line capillary rheometer. Power law models for blends with different nanoclay volume fractions were developed using appropriate correction factors. Consistency coefficients K for blends containing starch were significantly higher than 100% PCL. Starch–PCL nanocomposite blends showed shear‐thinning behavior with higher pseudoplasticity than did 100% PCL. Viscosities of nanocomposite blends were significantly lower than that of 100% PCL and nonreactive starch–PCL composites synthesized from simple extrusion mixing. Power law coefficients developed in this study will be used to evaluate rheology‐dependent parameters during scaling up the reactive extrusion process from a batch micro‐extruder to a high output continuous twin‐screw extruder. POLYM. ENG. SCI. 46:650–658, 2006. © 2006 Society of Plastics Engineers.  相似文献   

20.
Statistical analysis of inherent viscosities (LVN), shear modulus (G*), and melting temperature (Tm) interval data for isotactic polypropylene–linear polyethylene (HDPE) blends was performed in order to verify their microheterogeneity. High shear measurements in viscometric (Poiseuille's) flow were carried out on four replicated compositions of the blends. Least-squares treatment of the results yielded power law parameters for the blends differing in composition. The significance of differences between the blends of various HDPE content was tested using the multiple-range (Duncan's) test, and tentative conclusions are drawn on the composition dependence of the melt flow viscosities of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号