首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
    
Phototheranostic nanoplatforms are of particular interest for cancer diagnosis and imaging‐guided therapy. Herein, we develop a supramolecular approach to fabricate a nanostructured phototheranostic agent through the direct self‐assembly of two water‐soluble phthalocyanine derivatives, PcS4 and PcN4. The nature of the molecular recognition between PcS4 and PcN4 facilitates the formation of nanostructure (PcS4‐PcN4) and consequently enables the fabrication of PcS4‐PcN4 with completely quenched fluorescence and reduced singlet oxygen generation, leading to the high photoacoustic and photothermal activity of PcS4‐PcN4. In vivo evaluations suggest that PcS4‐PcN4 could not only efficiently visualize a tumor with high contrast through whole‐body photoacoustic imaging but also enable excellent photothermal therapy for cancer.  相似文献   

2.
    
Near‐infrared (NIR) imaging techniques have attracted significant attention for biological and medicinal applications due to the ability of NIR to penetrate deeply into tissues. However, there are very few stable, activatable molecular probes that can utilize NIR light in the wavelength range beyond 800 nm. Herein, we report a new activatable NIR system for photoacoustic imaging based on tautomeric benziphthalocyanines (BPcs). We found that the existence of a free hydroxyl group is crucial for NIR absorption of BPcs. Synthesized water‐soluble hydroxy BPcs exhibited high photostability and no fluorescence, which are desirable features for photoacoustic imaging. We synthesized BPcs in which the free hydroxyl group was masked by an esterase‐labile or an H2O2‐labile group. The photoacoustic signals of these hydroxy‐masked BPcs were increased upon NIR excitation at 880 nm in the presence of esterase or H2O2, respectively. These are rare examples of activatable probes utilizing NIR light at around 900 nm.  相似文献   

3.
    
Near-infrared dyes were developed to be contrast agents due to their ability to improve the productivity of photoacoustic (PA) imaging and photothermal therapy (PTT) treatments. During the article, we described in detail the PA and PT effects of a category of organic molecules. F4-TCNQ could potentially cause a red-shift in the peak PA intensity. The results show that the PTT intensity of the near-infrared dyes with phenyl groups were higher than near-infrared dyes with thiophene groups. We also investigated the photodynamic treatment effect of C1b to demonstrate that these dyes are highly desirable in biochemistry. The high photoacoustic intensity of the organic molecules and the good yield of reactive oxygen species could indicate that these dyes have good potential for a wide range of imaging applications. Finally, we embedded the dye (C1b) in a liposomal hydrophobic phospholipid bilayer (C1b⊂L) to facilitate the application of hydrophobic dyes in biomedical applications, which can be absorbed by cells with good compatible and high stability for the imaging of cellular PA.  相似文献   

4.
Stable photoactive organogels were successfully prepared by a two-step sequence involving: 1) formation of thermoreversible organogels by use of a combination of low-molecular-weight organogelators (LMOGs) and ZnII-phthalocyanine (ZnII-Pc) moieties containing complementary organogelator structures, and 2) strength enhancement of the gels by in situ cross-linking with the aid of CuI-catalysed azide-alkyne [3+2] cycloadditions (CuAACs). The optimum click reaction was carried out between a flexible C6 aliphatic diazide and a suitable dialkyne (molar ratio 1:1) added in a low proportion relative to the organogelator system [LMOG+ZnIIPc]. The dialkyne unit was incorporated into a molecule resembling the LMOGs structure in such a way that it could also participate in the self-assembly of [LMOG+ZnIIPc]. The significant compatibility of the multicomponent photoactive organogels towards this strengthening through CuAACs allowed their sol-to-gel transition temperatures (Tgel) to be enhanced by up to 15 degrees C. The Tgel values estimated by the "inverse flow method" were in good agreement with the values obtained by differential scanning calorimetry (DSC). Rheological measurements confirmed the viscoelastic, rigid, and brittle natures of all Pc-containing gels. Transmission and scanning electron microscopy (TEM, SEM) and atomic force microscopy (AFM) revealed the fibrilar nature of the gels and the morphological changes upon cross-linking by CuAAC. Emission of a red luminescence from the dry nanoscale fibrous structure-due to the self-assembly of the Pc-containing compounds in the organogel fibres-was directly observed by confocal laser scanning microscopy (CLSM). The optical properties were studied by UV/Vis and fluorescence spectroscopy. Fluorescence, Fourier-transform infrared (FTIR) and circular dichroism (CD) measurements were also carried out to complete the physicochemical characterization of selected gels. As a proof of concept, two different organogelators (cholesterol- and diamide-based LMOGs) were successfully used to validate the general strategy.  相似文献   

5.
潘立祥  黄艳琴  盛况  张瑞  范曲立  黄维 《化学学报》2021,79(9):1097-1106
荧光/光声成像和光疗技术的生物医学应用引起了人们越来越多的关注, 然而很多荧光/光声造影剂存在生物相容性较差, 缺乏肿瘤靶向性, 信噪比较低, 功能单一等共性问题, 严重限制其诊疗应用. 透明质酸具有优异的生物相容性和主动肿瘤靶向性, 可被透明质酸酶降解, 并且易于化学修饰和实现多种超分子弱相互作用力协同工作. 因此, 人们将透明质酸与荧光/光声造影剂结合制备纳米材料, 使其在细胞乃至活体的标记性能和治疗效果获得了很大的改善. 本文综述了将两类物质结合制备纳米材料的方法, 着重阐述了纳米材料的结构与性能关系, 为其未来设计和开发提供了指导, 最后对存在的主要问题以及未来的重要研究方向进行了分析和展望.  相似文献   

6.
共轭聚合物纳米颗粒是由π-共轭有机聚合物组成的尺寸在1~100nm范围内的新型有机纳米材料。与传统的有机小分子、半导体量子点和无机纳米材料相比,聚合物纳米颗粒具有光学性质特殊、结构多样、表面易修饰和生物相容性好等优点,因而被广泛应用于生物成像、传感与检测、载药和治疗等领域。本文主要围绕聚合物纳米颗粒的制备方法、性质结构和生物相容性等方面,重点介绍了聚合物纳米颗粒作为光诊疗剂在荧光成像、光声成像,以及光动力和光热治疗领域的研究进展,并对聚合物纳米颗粒的发展前景和未来面临的挑战进行了探讨。  相似文献   

7.
    
This study reports the development of iron‐chelated semiconducting polycomplex nanoparticles (SPFeN) for photoacoustic (PA) imaging‐guided photothermal ferrotherapy of cancer. The hybrid polymeric nanoagent comprises a ferroptosis initiator (Fe3+) and an amphiphilic semiconducting polycomplex (SPC) serving as both the photothermal nanotransducer and iron ion chelator. By virtue of poly(ethylene glycol) (PEG) grafting and its small size, SPFeN accumulates in the tumor of living mice after systemic administration, which can be monitored by PA imaging. In the acidic tumor microenvironment, SPFeN generates hydroxyl radicals, leading to ferroptosis; meanwhile, under NIR laser irradiation, it generates localized heat to not only accelerate the Fenton reaction but also implement photothermal therapy. Such a combined photothermal ferrotherapeutic effect of SPFeN leads to minimized dosage of iron compared to previous studies and effectively inhibits the tumor growth in living mice, which is not possible for the controls.  相似文献   

8.
    
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near‐infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG‐b‐PCL block‐copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37 %) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.  相似文献   

9.
基于层层(LBL)自组装技术,在Pt-Cu纳米合金表面依次包覆带正电的聚赖氨酸(PLL)和带负电的透明质酸(HA),成功构筑Pt-Cu@PLL@HA纳米平台。HA不仅延长了纳米平台血液循环时间,还可实现肿瘤主动靶向作用,提升肿瘤部位富集效果。在肿瘤区域透明质酸酶(HAase)作用下HA快速降解,释放Pt-Cu@PLL (+)颗粒,有利于肿瘤细胞特异性摄取。基于Pt-Cu合金良好的近红外二区(NIR-Ⅱ)吸收性能,实现了NIR-Ⅱ光声成像引导的NIR-Ⅱ光热高效抗肿瘤效果。  相似文献   

10.
    
Precision phototheranostics, including photoacoustic imaging and photothermal therapy, requires stable photothermal agents. Developing such agents with high stability and high photothermal conversion efficiency (PTCE) remains a considerable challenge. Herein, we introduce a new photothermal agent based on water‐soluble quaterrylenediimide (QDI) that can self‐assemble into nanoparticles (QDI‐NPs) in aqueous solution. Incorporating polyethylene glycol (PEG) into the QDI core significantly enhances both physiological stability and biocompatibility of QDI‐NPs. The highly photostable QDI‐NPs offer advantages including intense absorption in the near‐infrared (NIR) and high PTCE of up to 64.7±4 %. This is higher than that of commercial indocyanine green (ICG). Their small size (ca. 10 nm) enables sustained retention in deep tumor sites and also proper clearance from the body. QDI‐NPs allow high‐resolution photoacoustic imaging and efficient 808 nm laser‐triggered photothermal therapy of cancer in vivo.  相似文献   

11.
    
Theranostics provides opportunities for precision cancer therapy. However, theranostic probes that simultaneously turn on their diagnostic signal and pharmacological action only in respond to a targeted biomarker have been less exploited. We herein report the synthesis of a macrotheranostic probe that specifically activates its near‐infrared fluorescence (NIRF), photoacoustic (PA), and photothermal signals in the presence of a cancer‐overexpressed enzyme for imaging‐guided cancer therapy. Superior to the small‐molecule counterpart probe, the macrotheranostic probe has ideal biodistribution and renal clearance, permitting passive targeting of tumors, in situ activation of multimodal signals, and effective photothermal ablation. Our study thus provides a macromolecular approach towards activatable multimodal phototheranostics.  相似文献   

12.
In situ techniques are indispensable to understanding many topics in surface chemistry. As a consequence, several spectroscopic methods have been developed to provide molecular‐level information that only spectroscopy can supply. However, as important as this information is, it is just as critical to realize that nearly all surfaces under investigation have spatial heterogeneities of the order of nanometers to millimeters; thus, spatial analysis is very important to the overall interpretation. This Minireview focuses on a few of the recent developments in spectroscopic techniques that can provide spatial, spectroscopic, and in situ information. These techniques include photo‐electron microscopy, infrared and Raman imaging, and nonlinear optical imaging vibrational spectroscopy as applied to topics in corrosion, catalysis and self‐assembled monolayers.  相似文献   

13.
    
One of the most common anticancer therapies is photothermal therapy (PTT). The effectiveness of PTT depends on the photosensitizer being a molecule which is toxic for the cancer cells after electromagnetic wave irradiation. Therefore, a simulation of PTT was performed in this work on two colon cancer cells (SW480 and SW620) using platinum nanoparticles (Pt NPs). Interestingly, in the literature the dependence between the synthesis method and the photothermal properties of Pt NPs was not discussed. Consequently, in this paper, we evaluated the photothermal properties of Pt NPs synthesized by two different methods: polyol (PtI NPs) and green chemistry (PtII NPs). Scanning transmission electron microscopy revealed that the size of both Pt NPs obtained was 2 nm, the NPs were not agglomerated, and that the PtII NPs were distributed on green tea supports. The selected area electron diffraction and X-ray diffraction analysis confirmed the crystallinity of both types of Pt NPs. Fourier-transform infrared (FTIR) spectrum of the PtII NPs showed interactions between the NPs and stretching modes for C=O groups from flavonoids and polyphenols. Therefore, these chemical compounds could be responsible for reducing Pt4+ ions to Pt0. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay showed that the PtII NPs exhibited 10% and 20% better cytotoxicity effect on SW480 and SW620 cells, than PtI NPs. The viability of cancer cells decreased when Pt NPs were used in PTT. The highest percentage of dead cells (82%) was observed for PtII NPs and 650-nm laser irradiation. FTIR and Raman spectroscopy showed structural changes induced by both Pt NPs and laser irradiation of cells in the range corresponding to levels of DNA, phospholipids, proteins, and lipids. Moreover, the calculated photothermal conversion efficiency showed that the value of this parameter is around 35%, regardless of the synthesis method and used wavelengths.  相似文献   

14.
    
Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach. Covalent attachment of ZnP and ZnPc at the N-sites of NG in NG−ZnP and NG−ZnPc hybrids was confirmed by using a range of spectroscopic, thermogravimetric and imaging techniques. Ground- and excited-state interactions in NG−ZnP and NG−ZnPc were monitored by using spectral and electrochemical techniques. Efficient quenching of photosensitizer fluorescence in these hybrids was observed, and the relatively easier oxidations of ZnP and ZnPc supported excited-state charge-separation events. Photoinduced charge separation in NG−ZnP and NG−ZnPc hybrids was confirmed by using the ultrafast pump-probe technique. The measured rate constants were of the order of 1010 s,−1 thus indicating ultrafast electron transfer phenomena.  相似文献   

15.
    
The deterioration of synthetic polymers caused by biological process is usually evaluated by visual inspection and measuring physical effects. In contrast to this approach, we have applied vibrational spectroscopies to study the biodegradation of the synthetic resins. 29 synthetic resins used as paint binding media, including acrylic, alkyd and poly(vinyl acetate) polymers, were examined for potential susceptibility to fungal degradation using the standard method ASTM G21-96(2002). In addition, the degraded resins were analysed by Raman spectroscopy, FT-IR and FT-IR photoacoustic spectroscopy. Almost all the acrylic resins studied proved to be resistant to microbial attack, while all alkyd resins and some poly(vinyl acetates) turned out to be biodegradable. Within a few days of inoculation Aspergillus niger was the most copious fungus on the biodegraded resins. A comparison of the IR and Raman spectra of control and biodegraded resins did not show any differences, but photoacoustic spectroscopy revealed additional bands for the fungal-degraded resins, consistent with the presence of fungal-derived substances. The additional bands in the photoacoustic spectra were due to the presence of Aspergillus niger and melanin, a fungal pigment. Since IR photoacoustic spectroscopy can be also a suitable technique for the chemical characterisation of binding media, the same spectroscopic analysis can be employed to both characterise the material and obtain evidence for fungal colonization. Microbial growth on Sobral 1241ML (alkyd resin) after 28 d (growth rating 4) compared with the non-inoculated resin.  相似文献   

16.
17.
The reaction between trans-PcSiCl2 (1) and the potassium salts of six fatty acids (2 a-2 f) led to the trans-PcSi[OOC(CH2)nCH3]2 compounds (3 a-3 f), which were characterised by elemental analysis, IR, UV/Vis and 1H, 13C, and 29Si NMR spectroscopy. From a detailed study of the NMR spectra, the strong anisotropic currents of the Pc macrocycle were found to have an effect on up to the sixth methylenic group. As expected, the length of the hydrocarbon tail does not affect the chemical shift of the 29Si nucleus of any of the compounds, appearing at around -222.6. The structures of PcSi[OOC(CH2)nCH3]2, where n = 7, 10, 12, 13 and 20, were determined by X-ray crystallography. All the compounds were found to be triclinic with a P1 space group. In all cases the observed crystallographic pseudosymmetry is Ci and the asymmetric unit consists of half a molecule. The silicon atom is at the centre of a distorted octahedron and hence its coordination number is six. The carboxylate fragments are in a trans configuration with respect to the Pc macrocycle. The supramolecular structures are discussed in detail herein. The correlation between the 1H NMR chemical shifts and the position of the corresponding carbon atoms in the hydrocarbon tail reveals that the dicarboxylate substituents exhibit a spacer-like behaviour that enhances the solubility. A detailed study of the tail variable allowed us to evaluate the loss of radial shielding along the Pc2- ligand.  相似文献   

18.
A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples.  相似文献   

19.
There is an urgent need for methods allowing for a fast, non‐invasive, sensitive and selective monitoring of the effectiveness of anticancer drugs during the course of a chemotherapeutic treatment of cancer patients. The possibility of predicting and controlling the efficiency of chemotherapeutic agents for every patient individually enables a personalized therapy with largely improved success rates. The results presented herein demonstrate that Raman microspectroscopy is perfectly suited to monitor the impact of chemotherapeutic agents on living cells. The influence of the clinically well‐established chemotherapeutic docetaxel on both the morphology and also biochemistry of living colon cancer cells (HT‐29) has been studied by means of Raman spectroscopy in combination with modern chemometric approaches. The work presented paves the way for establishing Raman spectroscopy as a monitoring tool of the effectiveness of a chemotherapy treatment and can therefore be seen as a step towards personalized therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号