首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
臭氧污染在全国呈加剧态势,在非重点区域和非重点城市其相关研究薄弱.在湛江市选取3个采样点,使用苏玛罐和2,4-二硝基苯肼(DNPH)吸附管采样,并利用气相色谱-质谱/氢离子火焰检测器(GC-MS/FID)和高效液相色谱(HPLC)分析了101种挥发性有机物(VOCs),分析其主要组分和变化特点,计算VOCs的臭氧生成潜势(OFP),并利用正定矩阵因子分解模型(PMF)进行源解析.结果表明,采样期间湛江市φ(TVOCs)平均值为1.28×10-7,其中OVOCs占比最高,为52%,其次为烷烃(36%)、烯烃(7%)、卤代烃(2.42%)、芳香烃(1.61%)和炔烃(0.78%).VOCs组分日变化特征表明,芳香烃和烷烃早晚体积分数高而中午低,受光化学反应影响大;而OVOCs在光化学反应强烈的中午体积分数低而傍晚高,表明傍晚采样点附近OVOCs直接排放增多或受到上风向污染源输送的影响.湛江市TVOCs的OFP为3.28×10-7,优势物种为甲醛、1-丁烯、正丁烷、2-丁酮和乙醛.表征气团老化程度的X/E值和气团后向轨迹分析表明,采样期间,当受来自...  相似文献   

2.
挥发性有机化合物(VOCs)是臭氧和颗粒物等的重要前体物,对空气质量的影响尤为显著.为研究连云港市VOCs的组分特征和来源,选择4个国控点开展春、夏和秋季典型日的VOCs采样和分析,计算VOCs不同组分对臭氧生成的影响,利用正交矩阵因子分解法(PMF)解析VOCs的来源.结果表明,春季VOCs浓度为27.46×10-9~40.52×10-9,夏季为45.79×10-9~53.45×10-9,秋季为38.84×10-9~46.66×10-9;含氧化合物的浓度占比为41%~48%,在各个季节均为最高,浓度水平较高的VOCs物种是丙酮、丙烯醛和丙醛等,异戊二烯的浓度在夏季较高;一般而言VOCs浓度09:00高于13:00,其中丙烯醛、乙烯和二氯甲烷的变化较大;含氧化合物的臭氧生成潜势(OFP)最高,其次是芳香烃和烯烃类,烷烃的OFP最小,OFP较高的VOCs物种是丙烯醛、丙烯和乙烯等;影响连云港市VOCs的来源主要有工业源(49%)、溶剂使用源(23%)、交通源...  相似文献   

3.
曹梦瑶  林煜棋  章炎麟 《环境科学》2020,41(6):2565-2576
2018年秋季在南京利用大气挥发性有机物(volatile organic compounds, VOCs)吸附浓缩在线监测系统(AC-GCMS 1000)对大气VOCs进行连续观测,以了解其化学特征、臭氧生成潜势和污染来源.结果表明,南京秋季大气VOCs体积分数为(64.3±45.6)×10-9,以烷烃(33.1%)、含氧挥发性有机物(OVOCs)(22.3%)及卤代烃(21.8%)为主.VOCs的昼夜变化呈"双峰型"变化特征,高值主要出现在清晨的06:00~07:00及夜间的18:00~20:00,主要受机动车排放及气象要素的共同影响.秋季南京VOCs的臭氧生成潜势(ozone formation potential, OFP)为267.1μg·m-3,主要贡献物种是芳香烃类化合物(55.2%)和烯烃类化合物(20.8%).PMF受体模型源解析确定5个VOCs来源,分别是交通排放(34%)、工业排放(19%)、LPG排放(17%)、涂料及有机溶剂挥发(16%)以及生物质燃烧和燃煤排放(14%),因此控制南京工业区秋季大气污染应主要着力于交...  相似文献   

4.
VOCs作为臭氧与二次有机气溶胶的关键前体物,其来源解析对臭氧和颗粒物的协同控制至关重要.但多数VOCs具有反应性,不能完全满足受体模式对污染源排放化学物质组成稳定的假设要求,导致受体模式解析结果不能精准反映实际源贡献.为解决因不同VOCs反应活性不同而导致的组分相对变化与模型假设不符的问题,引入VOCs老化程度来表征...  相似文献   

5.
目前在世界范围内,由于高原城市海拔高、紫外线照射强烈,造成大气中挥发性有机物的源汇归趋呈现较独特的特点.本研究对2019年拉萨市2个城市站点和1个背景站进行大气挥发性有机物(VOCs)的离线罐采样及实验室组分分析,探究了拉萨地区VOCs体积分数水平、组成特征和来源贡献.拉萨市平均φ(VOCs)为49.83×10-9,其...  相似文献   

6.
徐晨曦  陈军辉  姜涛  韩丽  王波  李英杰  王成辉  刘政  钱骏 《环境科学》2020,41(12):5316-5324
2019年6~9月在成都市区对挥发性有机物(VOCs)进行在线观测,研究夏季VOCs浓度水平、变化特征、臭氧生成贡献(OFP)及来源贡献.结果表明,成都市区夏季TVOCs(总挥发性有机物)平均质量浓度为112.66μg·m-3,烷烃(29.51%)和卤代烃(23.23%)为主要组分; VOCs日变化峰值主要出现在上午10:00~11:00,受城市机动车、油气挥发和工业排放影响;夏季VOCs的OFP贡献中芳香烃贡献率(42.7%)最高,其次为烯烃(27.4%),关键活性物种为间/对-二甲苯、乙烯、丙烯、邻-二甲苯、异戊烷、环戊烷和丙烯醛等;使用PMF受体模型进行来源解析表明,移动源为成都市区夏季VOCs的主要贡献源,贡献率为34%,其次为工业源(17%)和油气挥发(14%),溶剂使用源和天然源分别贡献11%和13%.因此,机动车和工业排放为成都市区VOCs的重点控制源,同时溶剂使用及油气挥发等污染源的管控也不可忽视.  相似文献   

7.
基于聊城市2021年6月挥发性有机物(VOCs)和臭氧(O3)在线监测数据,系统分析了O3污染日和清洁日VOCs的浓度水平、组成特征、日变化特征和O3生成潜势(OFP),通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)识别了VOCs的潜在源区,利用特征物种比值和正定矩阵因子分解(PMF)模型对VOCs来源进行了解析.结果表明,聊城市2021年6月O3污染日和清洁日ρ(VOCs)小时均值分别为(115.38±59.12)μg·m-3和(88.10±33.04)μg·m-3,各类别VOCs浓度水平在污染日和清洁日的大小均表现为:含氧挥发性有机物(OVOCs)>烷烃>卤代烃>芳香烃>烯烃>炔烃>有机硫.污染日和清洁日浓度差值较大的VOCs物种均出现在二者VOCs浓度小时均值贡献前10物种中.总VOCs、烷烃、炔烃、芳香烃、卤代烃和有机硫浓度日变化趋势表现为日间低于夜间,OVOCs浓度日变化呈现出白天高,夜间低的特...  相似文献   

8.
基于2020年6~8月运城市区VOCs、 O3和NO2的在线监测数据,分析了运城市区夏季VOCs的污染特征,同时使用正交矩阵因子分解法(PMF)确定了其主要排放源,并通过最大增量反应活性法(MIR)和气溶胶生成系数法(FAC)对VOCs的化学反应活性进行了评估.结果表明,运城市区夏季凌晨和傍晚时段受VOCs和NO2污染较为严重,VOCs日变化峰值分别出现在08:00和20:00,峰值的出现主要受交通早晚高峰的影响;6~8月的ρ(VOCs)为50.52μg·m-3,质量分数最高的物种为烷烃(39.39%)和含氧挥发性有机物(OVOCs, 34.63%).利用PMF模型共确定了5个VOCs排放源,其中贡献率最大的为机动车尾气排放源(33.10%),其次为工业排放源(29.46%)、天然气及煤燃烧源(17.31%)、溶剂使用源(11.94%)和植物排放源(8.19%),控制机动车尾气排放源是缓解运城市夏季VOCs污染的关键.VOCs的臭氧生成潜势(OFP)均值为162.88μg·m-3  相似文献   

9.

2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)µg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。

  相似文献   

10.
上海秋季大气挥发性有机物特征及污染物来源分析   总被引:7,自引:0,他引:7  
综合分析了上海地区秋季典型月份挥发性有机物(VOCs)及其他痕量气体的污染水平及特征,VOCs平均小时浓度为63.64′10-9,非甲烷碳氢化合物(NMHCs)占挥发性有机物总量的67.43%;通过对VOCs物种浓度及特征比值分析发现研究区域大气老化现象明显;结合区域后向气流轨迹分析,考察了不同来源气流对区域污染特征的影响,发现陆地传输气流乙烷/乙炔(E/E)值较海上传输气流低,而两者的苯/甲苯(B/T)值没有明显差异.  相似文献   

11.
采用GC5000在线气相色谱仪,于2019年和2020年夏季6~8月分别对郑州市城区中大气环境挥发性有机化合物(VOCs)进行监测,探究了VOCs的污染特征,并重点利用比值分析,PMF受体模型和条件概率函数(CPF)模型对比研究了其来源贡献.结果表明,2019年和2020年夏季ρ(VOCs)平均值分别为65.7 μg·m-3和71.0μg·m-3.2019年烷烃占比逐月变化幅度不大,占比在55%左右,芳香烃整体呈上升趋势,烯烃呈下降趋势;前10物种占总VOCs的65.5%,主要物种依次为异戊烷、乙烷、丙烷、甲苯、正丁烷和间/对-二甲苯等.2020年烷烃和烯烃占比呈逐月升高趋势,芳香烃呈逐月降低趋势;前10物种占总VOCs的71.1%,主要物种依次为乙烷、乙烯、丙烷、异戊烷、正丁烷、甲苯和间/对-二甲苯等.2019年夏季OFP平均值为224.9 μg·m-3,其中芳香烃对OFP贡献率逐月升高,烯烃逐月降低;对OFP贡献的物种主要为间/对-二甲苯、异戊二烯、反式-2-丁烯、甲苯和乙烯等.2020年夏季OFP平均值为243.6 μg·m-3,其中芳香烃对OFP贡献逐月降低,烯烃逐月升高;对OFP贡献的物种主要为乙烯、间/对-二甲苯、异戊二烯、甲苯和间-乙基甲苯等.PMF和CPF模型解析表明,2019年对VOCs贡献较大的是溶剂使用源和油气挥发源,贡献率分别为36.7%和25.1%,其对OFP贡献也较大,分别为39.9%和23.3%,需重点关注西南部区域.2020年对VOCs贡献较大的仍为溶剂使用源和油气挥发源,贡献率分别为24.9%和22.5%;对OFP贡献较大的为溶剂使用源和机动车尾气排放源,贡献率分别为33.6%和22.9%,需重点关注北部和南部区域.因此,今后应重点关注溶剂使用、机动车尾气排放和油气挥发源的排放,尤其监测点位的西南部、北部和东南部区域污染源.  相似文献   

12.
青岛市夏季臭氧浓度水平高且污染事件频发,开展臭氧污染过程和非污染时期的挥发性有机物(VOCs)及其臭氧生成潜势(OFP)的精细化来源解析研究,对于有效降低沿海城市的大气臭氧污染,持续改善环境空气质量将会发挥重要的作用.因此,利用青岛市2020年夏季(6~8月)小时分辨率的在线VOCs监测数据,分析臭氧污染过程和非臭氧污染时期环境VOCs的化学特征,并通过正定矩阵因子分解(PMF)模型进行了环境VOCs及其OFP的精细化来源解析研究.结果表明,青岛市夏季环境ρ(TVOCs)平均值为93.8μg·m-3,臭氧污染过程相较于非臭氧污染时期TVOCs浓度上升了49.3%,其中芳香烃浓度增加最显著,增加了59.7%.夏季环境VOCs总的OFP达到246.3μg·m-3,臭氧污染过程相较于非臭氧污染时期环境VOCs的总OFP增加了43.1%;其中烷烃增加最多,增加了58.8%.间-乙基甲苯和2,3-二甲基戊烷是臭氧污染过程中OFP增加幅度最大的物种.青岛市夏季环境VOCs的主要贡献源为柴油车(11.2%)、溶剂使用(4.7%)、液化石油气及天然气(27....  相似文献   

13.
夏季为环境空气中臭氧污染事件的频发时期,针对挥发性有机化合物(VOCs)及其臭氧生成潜势(OFP)的时间精细化的来源解析研究,对有效地进行臭氧污染防控具有非常重要的作用.利用2019年夏季(6~8月)天津市郊区点位监测的小时分辨率VOCs在线数据,分析臭氧污染事件和非臭氧污染时期环境受体中VOCs及其OFP的变化特征,并利用正定矩阵因子分解(PMF)模型进行精细化的来源解析研究.结果表明,夏季环境受体中VOCs平均体积分数为24.42×10-9,臭氧污染事件中的VOCs平均体积分数为27.72×10-9,较非臭氧污染时期增加15.69%.夏季总VOCs(TVOCs)的OFP为87.92×10-9,其中烯烃的OFP最高,对TVOCs的OFP的贡献达58.28%.臭氧污染事件中TVOCs的OFP为102.68×10-9,较非臭氧污染时期增加19.59%.臭氧污染事件中VOCs的来源分别为石化工业及汽油挥发(29.44%)、柴油车尾气(23.52%)、液化石油气及汽油车尾气(22.00%)、天然气及燃烧(13.41%)、溶剂使用(6.14%)和植物排放(5.49%).相比于非臭氧污染时期,液化石油气及汽油车尾气和柴油车尾气分别增长4.84%和5.29%.石化工业及汽油挥发和植物排放的贡献均表现为08:00开始上升,11:00达到最高,这与太阳辐射增强和温度不断上升密切相关.液化石油气及汽油车尾气和柴油车尾气均具有明显的早晚高峰特征,并在夜间(00:00~06:00)保持较高贡献水平.根据PMF结果并结合OFP的计算方法,解析了不同源类对臭氧生成潜势的 贡献.石化工业及汽油挥发(31.01%)和柴油车尾气(36.64%)是较高贡献源类,相比非臭氧污染时期分别增加了 1.74%和8.27%;并且石化工业及汽油挥发贡献率在臭氧污染事件发生过程的上升阶段显著增加,而在下降阶段明显下降.  相似文献   

14.
杭州湾北岸36种挥发性有机物污染特征及来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾北岸VOCs (挥发性有机物)的浓度水平、组成特征、反应活性和潜在来源,采用GC-FID在线监测系统对杭州湾北岸环境大气中的36种VOCs开展了为期1 a (2017年12月—2018年11月)的连续观测,采用LOH(VOCs的·OH消耗速率)和OFP (O3生成潜势)2种方法估算了大气VOCs的反应活性,并利用PMF (正定矩阵因子分解)和CPF (条件概率函数)模型分析其来源.结果表明:①φ(VOCs)小时平均值在冬季(26.47×10-9)最高,夏季(9.76×10-9)最低;全年φ(VOCs)小时平均值为21.24×10-9,其中烷烃、烯烃+炔烃、芳香烃、卤代烃的贡献率分别为33.24%、34.13%、15.63%、17.00%;φ(烷烃)、φ(芳香烃)和φ(卤代烃)呈较明显的昼夜变化特征,φ(烯烃)和φ(炔烃)无明显昼夜变化趋势.②大气VOCs的总LOH和OFP分别为9.39s-1和220.57μg/m...  相似文献   

15.
本文利用天津市南开大学津南校区大气环境综合观测站的臭氧及其前体物(VOCs 和NOx)、气象参数等在线监测仪器,获取了 2018 年夏季(6~8 月)小时分辨率的数据信息;分析臭氧及其前体物的相互关系及变化特征;根据光化学年龄计算出VOCs的初始浓度对其日间(06:00~24:00)VOCs体积分数的光化学损耗进行修正...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号