首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to investigate the existence of infinitely many weak solutions for the $(p(x), q(x))$-Kirchhoff Neumann problem described by the following equation : \begin{equation*} \left\{\begin{array}{ll} -\left(a_{1}+a_{2}\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(\cdot)}u-\left(b_{1}+b_{2}\int_{\Omega}\frac{1}{q(x)}|\nabla u|^{q(x)}dx\right)\Delta_{q(\cdot)}u\+\lambda(x)\Big(|u|^{p(x)-2} u+|u|^{q(x)-2} u\Big)= f_1(x,u)+f_2(x,u) &\mbox{ in } \Omega, \\frac{\partial u}{\partial \nu} =0 \quad &\mbox{on} \quad \partial\Omega.\end{array}\right. \end{equation*} By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.  相似文献   

2.
研究拟线性椭圆系统(?)的非平凡非负解或正解的多重性,这里Ω(?)R~N是具有光滑边界(?)Ω的有界域,1≤qp~*/p~*-q,其中当N≤p时,p~*=+∞,而当1相似文献   

3.
In this paper,we are interested in the existence of positive solutions for the Kirchhoff type problems{-(a_1 + b_1M_1(∫_?|▽u|~pdx))△_(_pu) = λf(u,v),in ?,-(a_2 + b_2M_2(∫?|▽v|~qdx))△_(_qv) = λg(u,v),in ?,u = v = 0,on ??,where 1 p,q N,M i:R_0~+→ R~+(i = 1,2) are continuous and increasing functions.λ is a parameter,f,g ∈ C~1((0,∞) ×(0,∞)) × C([0,∞) × [0,∞)) are monotone functions such that f_s,f_t,g_s,g_t ≥ 0,and f(0,0) 0,g(0,0) 0(semipositone).Our proof is based on the sub-and super-solutions techniques.  相似文献   

4.
The author obtains that the asymptotic relations■hold as x→∞,where the random weightsθ_1,···,θ_(n )are bounded away both from 0 and from∞with no dependency assumptions,independent of the primary random variables X_1,···,X_(n )which have a certain kind of dependence structure and follow non-identically subexponential distributions.In particular,the asymptotic relations remain true whenX_1,···,X_(n )jointly follow a pairwise Sarmanov distribution.  相似文献   

5.
This paper is concerned with the following Kirchhoff-type equations $$ \left\{ \begin{array}{ll} \displaystyle -\big(\varepsilon^{2}a+\varepsilon b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\mathrm{d}x\big)\Delta u + V(x)u+\mu\phi |u|^{p-2}u=f(x,u), &\quad \mbox{ in }\mathbb{R}^{3},\(-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p},~u>0, &\quad \mbox{ in }\mathbb{R}^{3},\\end{array} \right. $$ where $f(x,u)=\lambda K(x)|u|^{q-2}u+Q(x)|u|^{4}u$, $a>0,~b,~\mu\geq0$ are constants, $\alpha\in(0,3)$, $p\in[2,3),~q\in[2p,6)$ and $\varepsilon,~\lambda>0$ are parameters. Under some mild conditions on $V(x),~K(x)$ and $Q(x)$, we prove that the above system possesses a ground state solution $u_{\varepsilon}$ with exponential decay at infinity for $\lambda>0$ and $\varepsilon$ small enough. Furthermore, $u_{\varepsilon}$ concentrates around a global minimum point of $V(x)$ as $\varepsilon\rightarrow0$. The methods used here are based on minimax theorems and the concentration-compactness principle of Lions. Our results generalize and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015), Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related literature.  相似文献   

6.
假定Γ是一个有限的、单的、无向的且无孤立点的图,G是Aut(Γ)的一个子群.如果G在Γ的边集合上传递,则称Γ是G-边传递图.我们完全分类了当G为一个有循环的极大子群的素数幂阶群时的G-边传递图.结果为:设图Γ含有一个阶为pn(p是素数,n≥2)的自同构群,且G有一个极大子群循环,则Γ是G-边传递的,当且仅当Γ同构于下列图之一1)pmK1,pn-1-m,0≤m≤n-1;2)pmK1,pn-m,0≤m≤n;3)pmKp,pn-m-1,0≤m≤n-2;4)pn-mCpm,pm≥3,m<n;5)2n-2K1,1;6)pn-1-mCpm,pm≥3,m≤n-1;7)2pn-mCpm,pm≥3,m≤n-1;8)2pn-mK1,pm,0≤m≤n;9)pn-mK1,2pm,0≤m≤n;10)pn-mK2,pm,0<m≤n;11)C(2pn-m,1,pm);12)pkC(2pm-k,1,pn-m),0<k<m,0<m≤n;13)(t-s,2m)C(2m 1/(t-s,2m),1,2n-1-m),其中0≤m≤n-1,2n-2(s-1)≡0(mod 2m),t≡1(mod 2),s(≠)t(mod 2m),1≤s≤2m,1≤t≤2n-1;14)∪p i=1 Ci p n-1,其中Ci p n-1=Ca1a1 [1 (i-1)pn-2]a 1 2[1 (i--1)p n-2]…a 1 (pn-1-1)[1 (i-1)p n-2]≌Cp n-1,i=1,2,…,p;15)∪2 i=1 Ci 2n-1,其中Ci 2n-1=Ca1a 1 [1 (i-1)(2n-2-1)]a1 2[1 (i-1)(2n-2-1)]…a1 (2n-1-1)[1 (i-1)(2n-2-1)]≌C2n-1,i=1,2.  相似文献   

7.
Consider a class of nonlocal problems $$ \left \{\begin{array}{ll} -(a-b\int_{\Omega}|\nabla u|^2dx)\Delta u= f(x,u),& \textrm{$x \in\Omega$},\u=0, & \textrm{$x \in\partial\Omega$}, \end{array} \right. $$ where $a>0, b>0$,~$\Omega\subset \mathbb{R}^N$ is a bounded open domain, $f:\overline{\Omega} \times \mathbb R \longrightarrow \mathbb R $ is a Carath$\acute{\mbox{e}}$odory function. Under suitable conditions, the equivariant link theorem without the $(P.S.)$ condition due to Willem is applied to prove that the above problem has infinitely many solutions, whose energy increasingly tends to $a^2/(4b)$, and they are neither large nor small.  相似文献   

8.
Let $\Omega\subset \mathbb{R}^4$ be a smooth bounded domain, $W_0^{2,2}(\Omega)$ be the usual Sobolev space. For any positive integer $\ell$, $\lambda_{\ell}(\Omega)$ is the $\ell$-th eigenvalue of the bi-Laplacian operator. Define $E_{\ell}=E_{\lambda_1(\Omega)}\oplus E_{\lambda_2(\Omega)}\oplus\cdots\oplus E_{\lambda_{\ell}(\Omega)}$, where $E_{\lambda_i(\Omega)}$ is eigenfunction space associated with $\lambda_i(\Omega)$. $E^{\bot}_{\ell}$ denotes the orthogonal complement of $E_\ell$ in $W_0^{2,2}(\Omega)$. For $0\leq\alpha<\lambda_{\ell+1}(\Omega)$, we define a norm by $\|u\|_{2,\alpha}^{2}=\|\Delta u\|^2_2-\alpha \|u\|^2_2$ for $u\in E^\bot_{\ell}$. In this paper, using the blow-up analysis, we prove the following Adams inequalities$$\sup_{u\in E_{\ell}^{\bot},\,\| u\|_{2,\alpha}\leq 1}\int_{\Omega}e^{32\pi^2u^2}{\rm d}x<+\infty;$$moreover, the above supremum can be attained by a function $u_0\in E_{\ell}^{\bot}\cap C^4(\overline{\Omega})$ with $\|u_0\|_{2,\alpha}=1$. This result extends that of Yang (J. Differential Equations, 2015), and complements that of Lu and Yang (Adv. Math. 2009) and Nguyen (arXiv: 1701.08249, 2017).  相似文献   

9.
This paper deals with the existence of weak solutions to a class of degenerate and singular elliptic systems in ℝ N , N 2 of the form
$\left\{{l@{\quad}l}-\mathop{\mathrm{div}}(h_{1}(x)\nabla u)+a(x)u=f(x,u,v)&\mbox{in}\mathbb{R}^{N},\\-\mathop{\mathrm{div}}(h_{2}(x)\nabla v)+b(x)v=g(x,u,v)&\mbox{in}\mathbb{R}^{N},\right.$\left\{\begin{array}{l@{\quad}l}-\mathop{\mathrm{div}}(h_{1}(x)\nabla u)+a(x)u=f(x,u,v)&\mbox{in}\mathbb{R}^{N},\\-\mathop{\mathrm{div}}(h_{2}(x)\nabla v)+b(x)v=g(x,u,v)&\mbox{in}\mathbb{R}^{N},\end{array}\right.  相似文献   

10.
具$p$-Laplacian 算子的多点边值问题迭代解的存在性   总被引:1,自引:0,他引:1  
利用单调迭代技巧和推广的Mawhin定理得到下述带有p-Laplacian算子的多点边值问题迭代解的存在性,{(Фp(u'))' f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R ).  相似文献   

11.
Let B  R~n be the unit ball centered at the origin. The authors consider the following biharmonic equation:{?~2u = λ(1 + u)~p in B,u =?u/?ν= 0 on ?B, where p n+4/ n-4and ν is the outward unit normal vector. It is well-known that there exists a λ* 0 such that the biharmonic equation has a solution for λ∈ (0, λ*) and has a unique weak solution u*with parameter λ = λ*, called the extremal solution. It is proved that u* is singular when n ≥ 13 for p large enough and satisfies u*≤ r~(-4/ (p-1)) - 1 on the unit ball, which actually solve a part of the open problem left in [D`avila, J., Flores, I., Guerra, I., Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348(1), 2009, 143–193] .  相似文献   

12.
In this work, we investigate the existence and the uniqueness of solutions for the nonlocal elliptic system involving a singular nonlinearity as follows: $$ \left\{\begin{array}{ll} (-\Delta_p)^su = a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega,\ (-\Delta_p)^s v= b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega,\ u=v = 0 ,\;\;\mbox{ in }\,\mathbb{R}^N\setminus\Omega, \end{array} \right. $$ where $\Omega $ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary, $0<\alpha <1,$ $0<\beta <1,$ $2-\alpha -\beta 相似文献   

13.
We study the Γ-convergence of the following functional (p > 2)
$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,  相似文献   

14.
ON A MULTILINEAR OSCILLATORY SINGULAR INTEGRAL OPERATOR (I)   总被引:2,自引:0,他引:2  
ONAMULTILINEAROSCILLATORYSINGULARINTEGRALOPERATOR(I)CHENWENGUHUGUOENLUSHANZHENManuscriptreceivedOctober18,1994.RevisedDece...  相似文献   

15.
${\mbox{\boldmath $R$}}^N$上奇异非线性多调和方程的正整体解   总被引:7,自引:2,他引:5  
本文研究形如△((△nu)(p-1) )=f(|x|,u,|(?)u|)u-β,x∈RN的奇异非线性多调和方程在RN上的正整体解,此处P>1,β≥0是常数,n是自然数,f:R × R ×R →R 是一个连续函数, ξδ*:=sign(ξ)·|ξ|δ,,ξ∈R,δ>0,给出了该类方程具有无穷多个其渐进阶刚好为|x|2n的正整体解的充分条件与必要条件.这些结论可以推广到更一般的方程.  相似文献   

16.
Let G = (V, E) be an undirected graph and C(G){{\mathcal C}(G)} denote the set of all cycles in G. We introduce a graph invariant cycle discrepancy, which we define as
${\rm cycdisc}(G) = \min_{\chi: V \mapsto \{+1, -1\}} \max_{ C \in {\mathcal C} (G)} \left|\sum_{v \in C} \chi(v)\right|.${\rm cycdisc}(G) = \min_{\chi: V \mapsto \{+1, -1\}} \max_{ C \in {\mathcal C} (G)} \left|\sum_{v \in C} \chi(v)\right|.  相似文献   

17.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

18.
Consider the Kirchhoff type equation \begin{equation}\label{eq0.1}-\left(a+b\int_{\mathbb{R}^{N}}|\nabla u|^{2}\,dx\right) \Delta u=\left(\frac{1}{|x|^\mu}*F(u)\right)f(u)\ \ \mbox{in}\ \mathbb{R}^N, \ \ u\in D^{1,2}(\mathbb{R}^N), ~~~~~~(0.1)\end{equation}where $a>0$, $b\geq0$, $0<\mu<\min\{N, 4\}$ with $N\geq 3$, $f: \mathbb{R}\to\mathbb{R}$ is a continuous function and $F(u)=\int_0^u f(t)\,dt$. Under some general assumptions on $f$, we establish the existence of a nontrivial spherically symmetric solution for problem (0.1). The proof is mainly based on mountain pass approach and a scaling technique introduced by Jeanjean.  相似文献   

19.
该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题其中Ω是RN中具有C1边界的有界区域,0∈■Ω,N≥5.2*(s)=2(N-s)/N-2(0≤s≤2)是临界Sobolev-Hardy指标, 10.利用变分方法和对偶喷泉定理,证明了这个方程无穷多解的存在性.  相似文献   

20.
We study ${W^{2,m(\cdot)}_{loc}}$ regularity for local weak solutions of p(·)-Laplace equations where ${p\in C^1(\Omega) \cap C(\overline{\Omega})}$ and ${\min_{x\in \overline{\Omega}} p(x) > 1}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23