首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.  相似文献   

2.
In this work we carried out an experimental investigation into enhancement of the sorption capacity of carbon fabric using plasma treatment methods.Carbon fabric is based on viscose fiber and is hydrophobic by nature.Enhancement of the fabric sorption capacity is required for its application in medicine.For this purpose,two plasma treatment methods were considered,i.e.atmospheric nonequilibrium radiofrequency(RF)discharge and a vacuum RF plasma source with an external magnetic field.Samples treated by atmospheric discharge demonstrated aging effects during the first week after treatment.The sorption capacity of samples treated by the RF plasma source was stable over the same period and reached values as high as 0.95.Parameters of the beam created by the vacuum RF plasma source were analyzed and dependences of the fabric sorption capacity and specific surface area on plasma treatment time were investigated.We found that sorption capacity reached its maximum value after 30 min of treatment and did not change significantly if processing was continued,while the specific surface area reached its maximum after 3 min of treatment and quickly decreased after that.It was found that the micropore structure of the fabric remained almost the same during plasma treatment.The volume of mesopores in a unit of the fabric mass(specific volume)doubled during the first 5 min of treatment and returned to initial values after 30 min of treatment.The sorption capacity continued to increase even when the specific surface area decreased after reaching its peak value.This indicates the important role of surface functional groups formed on carbon fibers during plasma treatment.This is consistent with the results of x-ray photoelectron spectroscopy analysis showing changes in surface oxidation during plasma treatment.  相似文献   

3.
采用脉冲偏压磁控溅射离子镀(MSIP)技术在贫铀表面制备铝镀层,利用电化学测试技术、扫描电镜(SEM)及X射线能谱(EDS)对铝镀层在50μg/gCl-水溶液中的电化学腐蚀行为进行研究。结果表明:铝镀层的腐蚀电位-534.8mV高于贫铀的腐蚀电位-641.2mV,它对贫铀是一种阴极性镀层;镀铝贫铀样品的极化电阻和电化学阻抗幅值远大于贫铀,腐蚀电流远小于贫铀,铝镀层对贫铀基体具有良好的防腐蚀性能;镀铝贫铀样品的腐蚀特征为局部腐蚀,并出现镀层破裂、剥落,抗腐蚀性能变差;铝/铀界面伪扩散层具有一定的抗腐蚀能力。  相似文献   

4.
A radio frequency argon plasma reactor with a stirrer was employed for the surface treatment of polypropylene (PP) powders. The changes in the superficial contact angle and the superficial composition of the un-treated and treated PP powders were analyzed by means of water contact angle (WCA) measurement, X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The water contact angle changed from the original value of 130.2° before plasma treatment to the value of 73.6° after treatment for 5 minutes. With the increase in plasma treating time, there were a decrease in the water contact angle and an increase in the content of oxygen containing polar functional groups (i.e., C-O, C=O and O-C=O). Both XPS and ATR-FTIR results indicated that the plasma treatment led to the formation of oxygen containing polar functional groups due to oxidation on the surface of the PP powders, and the trend of variation of the water contact angle with plasma treating time was related to the concentration of oxygen atom on the treated PP powders surface. Furthermore, the aging of the plasma-treated PP powders was investigated.  相似文献   

5.
In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemical changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 min in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.  相似文献   

6.
对Zr-Sn-Nb合金在α+β两相区温度下不同工艺热处理后所得样品,在360 ℃/18.6 MPa纯水环境中进行均匀腐蚀试验,并采用扫描电子显微镜(SEM)观察样品微观形貌、聚焦离子束(FIB)和原子力显微镜(AFM)分析腐蚀后样品表面氧化膜。结果表明,Zr-Sn-Nb合金在α+β两相区温度下热处理时,锆合金中会形成条带状β-Zr第二相,再经过α相区温度最终退火后,β-Zr区域会分解为α-Zr和第二相粒子;经α相区最终退火的样品,在360 ℃/18.6 MPa纯水中的耐腐蚀性能优于未经最终退火的样品;未退火样品中条带状β-Zr第二相区域的氧化膜较α-Zr基体的氧化膜厚,而经过α相区温度退火后β-Zr发生分解,该区域的腐蚀氧化膜出现凹陷。  相似文献   

7.
Uniform corrosion tests were carried out with the specimens prepared by different heat treatments at the temperature in α+β phase field. The surface microstructure of specimens was observed by scanning electron microscope, the corrosion behavior was analyzed by autoclaves, and the oxide layer on the surface after the corrosion test was analyzed by focused ion beam (FIB) and atomic force microscope (AFM). The results show that after the heat treatment in α+β phase field, lamellar β-Zr phase appeares in the Zr matrix, and after the subsequent α phase final heat treatment, the β-Zr phase will be decomposed to α-Zr and discontinuous second phase particles. For the specimens heat treated in α+β phase field, after the α phase final heat treatment, the corrosion resistance under 360 ℃/18.6 MPa pure water condition is better than that of specimens without final heat treatment. The oxide film formed on the β-Zr protrudes on the oxide surface, on the contrary, after α phase final heat treatment, β-Zr decomposes, and the oxide layer is sunken in this area.  相似文献   

8.
In order to clarify the fragmentation mechanism of a metallic alloy (U–Pu–Zr) fuel on liquid phase formed by metallurgical reactions (liquefaction temperature = 650 °C), which is important in evaluating the sequence of core disruptive accidents for metallic fuel fast reactors, a series of experiments was carried out using molten aluminum (melting point = 660 °C) and sodium mainly under the condition that the boiling of sodium does not occur. When the instantaneous contact interface temperature (Ti) between molten aluminum drop and sodium is lower than the boiling point of sodium (Tc,bp), the molten aluminum drop can be fragmented and the mass median diameter (Dm) of aluminum fragments becomes small with increasing Ti. When Ti is roughly equivalent to or higher than Tc,bp, the fragmentation of aluminum drop is promoted by thermal interaction caused by the boiling of sodium on the surface of the drop. Furthermore, even under the condition that the boiling of sodium does not occur and the solid crust is formed on the surface of the drop, it is confirmed from an analytical evaluation that the thermal fragmentation of molten aluminum drop with solid crust has a potential to be caused by the transient pressurization within the melt confined by the crust. These results indicate the possibility that the metallic alloy fuel on liquid phase formed by the metallurgical reactions can be fragmented without occurring the boiling of sodium on the surface of the melt.  相似文献   

9.
Commercial carbon cloth(CC) is an ideal electrocatalysis material to produce oxygen evolution reaction(OER) due to its high conductive and 3 D flexible structure, but the lacked active sites limit its application. For improving its OER performance, the present study proposed an effective method combining plasma and acid treatment to introduce oxygen-containing functional groups and produce more active sites on its surface. Compared to the pristine CC, the plasma and acid treated carbon cloth(PN-CC) delivers a reduced overpotential by 34.6% to achieve current density of 10 m A cm~(-2). The Tafel slope declines from 97.5 m V dec~(–1)(pristine CC) to 55.9 m V dec~(–1)(PN-CC), showing an increased OER kinetic. Additionally, PN-CC electrocatalyst shows outstanding stability after 5000 cycles or 25 000 s. The combination of plasma and acid treatment shows a significant potential in surface modification for electrocatalysts.  相似文献   

10.
In this study, the effects of plasma treatment parameters on surface morphology, chemical constituent, dyeability and color fastness of silk fabric were investigated. Atmospheric pressure glow discharge plasma generated with different applied voltages(0 kV to 45 kV) was used to treat the surface of silk fabrics. C I Natural Yellow 3 was used to dye untreated and plasmatreated silk fabrics. The physical analysis based on scanning electron microscopy showed that the surface of silk fabrics was affected by plasma treatment. The chemical analysis was investigated with x-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The results showed that the content of C 1s decreased with the increasing applied voltage, the content of N 1s and O 1s increased with the increasing applied voltage. The increasing K/S values represented that the dyeability of silk fabrics was improved after plasma treatment. The color fastness to dry and wet rubbing was decreased after plasma treatment.  相似文献   

11.
多台阶靶是冲击波稳定性、平面性实验的重要实验用靶。本工作采用单点金刚石切削技术,优化工艺过程设计,完成了铝双边多台阶靶的制备。应用Veeco NT1100白光干涉仪对表面轮廓及粗糙度进行了测量。通过SPDT技术制备的具有微细双边结构的多台阶靶可满足实验要求。各台阶表面几何厚度误差小于1%,均方根粗糙度Rq小于50 nm,轮廓最大高度Tir仅在底部台阶处最大,约200 nm,其余台阶处均小于100 nm,台阶垂直度在90°±1°内。  相似文献   

12.
Bismuth vanadate(BiVO_4) is a promising semiconductor material for solar energy conversion via photoelectrochemical(PEC) water splitting,whereas its performance is limited by surface recombination due to trapping states.Herein,we developed a new method to passivate the trapping states on BiVO_4 surface using ultrathin aluminum oxide(Al_2O_3) overlayer by atomic layer deposition.The coated ultrathin Al_2O_3 film on BiVO_4 significantly enhanced photocurrent densities of the BiVO_4 anodes under standard illumination of AM1.5 G(100 mW/cm2).The electrochemical impedances and photoluminescence spectra were studied to confirm that the improved PEC water splitting performance of BiVO_4 was due to the decreased surface recombination state on BiVO_4,which effectively enhanced the charge separation.  相似文献   

13.
The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.  相似文献   

14.
In this paper, we report the modification of polyethylene(45 μm in thickness) webs through a roll-to-roll dielectric barrier discharge plasma treatment in an open atmospheric environment.Our work differs from the normal adopted corona discharge treatment at an atmospheric pressure, in that three monomers: allylamine, acrylic acid, and ethanol, are inlet into the discharge zone by argon(Ar) carrier gas. As a comparison, Ar plasma treatment is also carried out. We focus on the aging properties of treated plastics in the open air. It is found that the modified webs can retain the surface energy as high as 50.0?±?1 mN m~(-1) for more than three months. After characterization of the as-prepared and aged samples by the surface roughness, the wettability, and the chemical structure, the mechanism of retaining high surface energy is then presumed. We think that the initial high surface energy just after plasma treatment is correlated to the grafted functional groups, while the over 50.0 mN m~(-1) remaining surface energy after three month aging is due to the stable concentrations of oxygen-contained and nitrogencontained groups by post-reaction on the surfaces.  相似文献   

15.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   

16.
采用径迹蚀刻的方法研究了热处理对聚对苯二甲酸乙二醇酯(PET)薄膜中重离子径迹的热退火效应。使用113.7 MeV的32S离子在PET薄膜中产生垂直于表面且贯穿薄膜的离子径迹。对薄膜进行局部热处理,加热温度为70~240 ℃,时间为1~300 s。薄膜经过化学蚀刻成核孔膜后使用显微镜观测。结果表明:在相同的热处理时间下,随着热处理温度的升高,PET薄膜中离子径迹的热退火效应愈加明显;在热处理温度不变的情况下,随着热处理时间的增加,退火效应亦愈加明显。  相似文献   

17.
Microbial contamination induces surface deformations and strength degradation of cotton fabrics by invading deeply into the fibers.In this study,the sterilization effects of low pressure plasmas on bacteria-inoculated cotton fabrics were investigated.Oxygen plasma treatment completely sterilized the cotton fabrics inoculated with various concentrations of staphylococcus aureus.Also,the influence of plasma treatment on physical properties of fabrics was examined.It was found that the plasma treatment did not affect ultimate tensile strength and surface morphology of the fabrics because it took advantage of relatively low plasma temperature.  相似文献   

18.
Thin aluminum specimens implanted with krypton ions at an energy of 50 keV with a dose of 1016 ions/cm2 are examined by means of scanning electron microscopy. Various structural changes of the surface are observed after annealing at temperatures above 623 K. It is revealed that the extraction of krypton atoms from aluminum can be divided qualitatively into four temperature regions. In the first region (< 673 K), bubble growth takes place. In the second region (673–873 K), the bombarded surface peels off and a new surface appears. In the third region (873–933 K) the surface structural changes in the above two regions are repeated in the new surface and, finally, (⪢ 933 K) almost all krypton atoms are extracted from aluminum.  相似文献   

19.
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle(WCA),chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 m J m~(-2)to 66.28 m J m~(-2).Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.  相似文献   

20.
The non-monotonous dependence of the total sputtering yield on the projectile atomic number, which is unexpected in the frame of the Sigmund linear cascade theory, is investigated using Monte Carlo simulations (program SRIM 2003). This effect is studied on the example of aluminum sputtering by six different projectiles (N, Ne, Al, Ar, Kr and Xe) at normal incidence. The incident projectile energy is 2 keV. Investigation consists of the analyses of ASI distributions of sputtered atoms as well as of nuclear energy loss depth distributions of projectiles with fixed number of ejected atoms. The results show that the non-monotonous behavior of Y(Z) is due to the ability of projectiles somewhat lighter than aluminum to efficiently eject large number of atoms by formation of collision cascades in the subsurface region which are directed towards the surface. On the other hand, ions that are heavier or significantly lighter than aluminum cannot form this type of cascades - the heavier ions cannot transfer a lot of energy to recoils in a primary knock-on collision that will move towards the surface, while significantly lighter ions transfer the energy too deep into the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号