首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 43 毫秒
1.
采用快速加碱法制备了分别以Al13和Al30为主要水解形态的聚合氯化铝PAC-Al13和高聚聚合氯化铝PACAl30。通过向PAC-Al30中引入SO2-4/Al3+摩尔比为0.06的SO2-4离子,制得高聚聚硫氯化铝SPAC-Al30。激光散射粒径分析以及Ferron逐时络合比色结果表明,加入SO2-4后SPAC-Al30的平均粒径增大为4.85 nm,高聚合水解形态Alc含量分别比PAC-Al13和PAC-Al30提高52.7%和17.5%。ζ电位分析以及烧杯混凝实验结果表明,SPAC-Al30的电中和能力不及PACAl30和PAC-Al13,混凝去除水中腐殖酸的效果却有显著提高,且由于SPAC-Al30较为温和的电中和性能,在混凝剂投量较高时不易出现再稳现象。SPAC-Al30的纳米级分子尺寸和高聚合水解形态有利于其发挥更优的吸附架桥和网捕卷扫作用,SPAC-Al30是去除水中腐殖酸的一种新型高效混凝剂。  相似文献   

2.
孙鹏  童庆  象豫  刘煜  徐慧 《环境工程学报》2022,16(1):143-153
针对含氟矿井水中有机物含量较高的问题,使用混凝区域图研究了在腐殖酸(HA)存在的条件下Al13混凝除氟的效果及相关的影响因素;使用电喷雾飞行时间质谱(ESI-TOF-MS)、差分吸收光谱法(DOAS)和X射线光电子能谱分析(XPS)考察了HA与F在混凝过程中的竞争关系,且表征了Al13与F的络合产物;分析了HA影响Al...  相似文献   

3.
以对乙酰氨基酚(ACE)、卡马西平(CBZ)、萘普生(NAP)、雌二醇(E2)和双氯芬酸(DCF)5种药物为目标物,采用静态实验,分别投加高岭土和腐殖酸来模拟水源水中的悬浮颗粒和天然有机物,考察了混凝过程中高岭土和腐殖酸投加量对5种目标药物去除效能的影响。结果发现,在未投加高岭土与腐殖酸的去离子水体系中进行硫酸铝混凝实验时,ACE与CBZ 2种药物的最大的去除率都不超过10%,5种药物中疏水性最高的DCF去除效果最好,最高去除率达到了33%;高岭土加入后对ACE与CBZ的去除效率无明显影响,但对NAP、E2与DCF的去除则有显著的促进作用,最大去除率分别达到31.53%、36.46%和52.4%;而在不投加混凝剂时,单独高岭土对5种药物的最大吸附去除率仅有20%左右。腐殖酸与高岭土同时加入后,对E2的混凝去除效果有较明显的抑制作用,但NAP与DCF去除效率却得到了一定程度的增加,最大去除率分别达到了63.5%和66.6%。可见,当水中含有悬浮颗粒物及腐殖酸的情况下,混凝工艺对酸性药物(如NAP及DCF)有较好的去除效果。  相似文献   

4.
以模拟地下水为研究对象,进行了复配介质去除地下水中腐殖酸的实验研究。探讨了配比、粒径、固液比、pH和温度对腐殖酸去除效果的影响。腐殖酸的浓度通过紫外分光光度法测定。结果表明:在不加活性炭的条件下,H物质∶X物质∶Q物质=1∶8∶8时,其硬度较好;在初始pH=6.34、反应时间为4 h时,去除率可达到95%以上;当反应时间≤1 h时,去除率随粒径增大而减小,而当反应时间为2~6 h时,小粒径和中等粒径复配介质对腐殖酸去除率略高于大粒径;一定浓度范围内,腐殖酸的去除率与固液比呈正相关,但固液比增大时,并不能无限提高去除率,当固液比为1∶200~1∶50时,去除率呈现平台;pH对复配介质去除效果影响不大,而温度对腐殖酸的去除有显著影响,较低温度(16.8℃)下的去除率比较高温度(35.0℃)下的去除率高5%。该复配介质去除地下水中腐殖酸是有效可行的,可作为PRB(permeable reactive barrier,渗透反应格栅)的潜在反应介质。  相似文献   

5.
通过一系列试验对混凝去除水中的腐殖质的影响因素进行了评价。结果表明 ,pH值是影响水中腐殖质去除效果的一个关键因素 ,当水中腐殖质浓度为 10 .0mg L ,铝盐作混凝剂时 ,去除腐殖质的最佳pH值在 6.2— 6.6范围内 ;腐殖质浓度升高时 ,最佳pH值向酸性方向偏移。强化混凝调节pH值虽然增加了酸碱费用 ,但是它可以减少混凝剂投量 ,减轻污泥处理负担 ,其总体进行费用并没有增加 ,可认为是一种可行的运行方式  相似文献   

6.
活性炭多维电极法去除水中腐殖酸过程与宏观动力学研究   总被引:3,自引:0,他引:3  
采用活性炭多维电极法去除水中溶解态腐殖酸。实验结果表明,与活性炭单纯吸附法相比,活性炭多维电极法可显著提高对溶解态腐殖酸的去除率;在连续运行条件下,延长水力停留时间,升高槽电压,溶解偏碱性有利于腐殖酸的去除;高效液相色谱分析结果表明。电极的氧化还原作用可使有机物分子量变小或矿化,因而处理系统有可能延长活性炭的使用寿命。  相似文献   

7.
天然沸石去除腐殖酸和氨氮的研究   总被引:13,自引:0,他引:13  
采用改性的浙江缙云天然斜发沸石,进行去除氨氮和腐殖酸的研究。腐殖酸对氨氮的去除有影响,含量越高。影响也越大。沸石主要去除大分子量的腐殖酸,对小分子量的腐殖酸去除效果较差。由于大分子腐殖酸会干扰氨氮的去除,去除大分子的腐殖酸有助于提高沸石去除氨氮的效果。  相似文献   

8.
针对高碱度水库水源的某水厂残留铝超标问题,选取碱化度(B)与Alb含量不同的3种铝盐絮凝剂,研究不同投量与pH值下混凝效果与残留铝浓度水平。结果表明,碱化度和Alb含量显著影响混凝效果。DOC和浊度的去除率随着3种絮凝剂AlCl3(B=0)、PACl-1(B=1.2)、PACl-2(B=2.2)投量增大而升高。3种絮凝剂投量在1.5~2.0 mg/L(以铝计)范围内,总铝和溶解铝含量最低。对于该水厂自制的絮凝剂PACl-2,可通过降低絮凝剂碱化度,或将水的pH值降低至7~7.5之间,以此可以提高PACl-2混凝效果,而且可以降低出厂水残留铝浓度。考虑工程应用可行性,可优先考虑调整絮凝剂生产工艺。  相似文献   

9.
ZH-02树脂对水中腐殖酸的吸附去除研究   总被引:1,自引:0,他引:1  
通过几种吸附树脂ZH 0 0、ZH 0 1、ZH 0 2、ZH 0 3、颗粒活性炭 (GAC)和AmberliteXAD 4对腐殖酸的静态吸附试验的筛选结果 ,发现大孔树脂ZH 0 2对腐殖酸具有较好的吸附效果。利用颗粒活性炭作为参照 ,探讨了ZH 0 2的动态吸附去除效果和脱附再生条件 ,发现常温下醇碱溶液效果较好。  相似文献   

10.
强化混凝去除水中的腐殖质   总被引:3,自引:0,他引:3  
通过一系列试验对混凝去除水中的腐殖质的影响因素进行了评价。结果表明,pH值是影响水中腐殖质去除效果的一个关键因素,当水中腐殖质浓度为10.0mg/L,铝盐作混凝剂时,去除腐殖质的最佳pH值在6.2-6.6范围内;腐殖质浓度升高时,最佳pH值向酸性方向偏移。强化混凝调节pH值虽然增加了酸碱费用,但是它可以减少混凝剂投量,减轻污泥处理负担,其总体进行费用并没有增加,可认为是一种可行的运行方式。  相似文献   

11.
PAC与粘土矿物混凝去除颤藻及残余铝形态研究   总被引:3,自引:2,他引:3  
刘振儒  安娣 《环境工程学报》2008,2(12):1647-1650
研究了PAC与不同粒径的天然粘土矿物复合混凝去除给水中的颤藻。结果表明,两者复合除藻效果显著优于单加PAC。当PAC浓度为12 mg/L,矿物浓度为24 mg/L,粒径为160目时,除藻效果最好,浊度和叶绿素a去除率分别为98.2%和100%。两者复合后PAC形态含量都发生了变化,悬浮态铝含量相对增加,溶解态铝含量相对减少,总残余铝量减小。  相似文献   

12.
The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment.  相似文献   

13.
采用化学共沉淀一步法以钙盐和铁盐对多壁碳纳米管(MWCNTs)改性以制备具有去除水中微污染物腐殖酸的磁性碳纳米管复合材料。X射线能谱分析表明改性MWCNTs上载有Ca和Fe元素。通过振动样品磁强计测得该复合材料具有较强磁性。改性后的MWCNTs 30 min对水中腐殖酸的去除率由改性前的63.89%提高到90.27%。研究了改性MWCNTs投加量、腐殖酸初始浓度、吸附时间、振荡速度、pH及温度对水中腐殖酸去除的影响。结果表明,腐殖酸去除率随着载Ca磁性MWCNTs投加量增大而提高。吸附量随着腐殖酸初始浓度的增大而增加,但去除率却减小。吸附初期腐殖酸去除速率快,0.5 g·L-1的载Ca磁性多壁碳纳米管在腐殖酸初始浓度为20 mg·L-1时,5 h达到吸附平衡,平衡吸附量为39.41 mg·g-1。腐殖酸去除率随着振荡速度的增大而增大,在225 r·min-1时达最大,随后随着振荡速度的增大而缓慢下降。在弱酸性下,腐殖酸去除率较高,当pH为5时,腐殖酸去除率达到92.24%;当pH5时,腐殖酸去除率随pH增大呈下降趋势。腐殖酸去除率随着温度的升高而降低。  相似文献   

14.
Removal of metal ions and humic acid from water by iron-coated filter media   总被引:8,自引:0,他引:8  
Lai CH  Chen CY 《Chemosphere》2001,44(5):1177-1184
Iron oxide is an excellent, regenerable adsorbent, and often controls free metals through adsorption reaction. The utilization of heating process for coating iron oxide on sand surface allowed the media to be used in a packed column. Iron-coated sand was investigated for adsorbing metal ions and natural organic matter from water by batch and column experiments. Chemical analysis (energy dispersive analysis of X-ray, EDAX) was used for characterizing the copper and lead adsorption sites on iron-coated sand. From the batch experiment results, the copper and lead ions could be removed simultaneously by the iron-coated sand in the competition adsorption system. The interaction between copper, lead ions and iron oxide on sand surface was primarily the chemical bonds. The maximum adsorption capacities of iron-coated sand for copper and lead were 0.259 mg Cu/g-sand and 1.211 mg Pb/g-sand, respectively. The presence of humic acid led to increase the adsorption of copper and lead. Results from column experiments indicated that the copper ions, lead ions and humic acid could be removed completely before the breakpoint. Consequently, the iron-coated sand may be applied for the adsorption/filtration of metal ions and natural organic matters from water.  相似文献   

15.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

16.
Arsenic (As) contaminated aquifers contain iron minerals and clays that strongly bind As at their surfaces. It was suggested that As mobilization is driven by natural organic matter (including fulvic acids (FA) and humic acids (HA)) present in the aquifers either via providing reducing equivalents for reductive dissolution of Fe(III) (hydr)oxides or via competitive desorption of As from the mineral surfaces. In the present study we quantified sorption of As(III) and As(V) to Ca(2+)-homoionized illite (IL) and to kaolinite (Kao) as well as to HA-coated clays, i.e., illite-HA (IL-HA) and kaolinite-HA (Kao-HA) at neutral pH. Clay-HA complexes sorbed 28-50% more As than clay-only systems upon addition of 100μM As(III)/As(V) to 0.5g of clay or HA-clay with Ca(2+) probably playing an important role for HA binding to the clay surface and As binding to the HA. When comparing sorption of As(V) and As(III) to clay and HA-clay complexes, As(V) sorption was generally higher by 15-32% than sorption of As(III) to the same complexes. IL and IL-HA sorbed 11-28% and 6-11% more As compared to Kao and Kao-HA, respectively. In a second step, we then followed desorption of As from Kao, Kao-HA, IL and IL-HA by 100 and 500μM phosphate or silicate both at high (0.41-0.77μmol As/g clay), and low (0.04 to 0.05μmol As/g clay) As loadings. Phosphate desorbed As to a larger extent than silicate regardless of the amount of As loaded to clay minerals, both in the presence and absence of HA, and both for illite and kaolinite. At high loadings of As, the desorption of both redox species of As from clay-HA complexes by phosphate/silicate ranged from 32 to 72% compared to 2-54% in clay only systems meaning that As was desorbed to a larger extent from HA-coated clays compared to clay only systems. When comparing As(III) desorption by phosphate/silicate to As(V) desorption in high As-loading systems, there was no clear trend for which As species is desorbed to a higher extent in the four clay systems meaning that both As species behave similarly regarding desorption from clay surfaces by phosphate/silicate. Similarly, no significant differences were found in high As-loading systems in the amount of As desorbed by phosphate/silicate when comparing Kao vs. IL and Kao-HA vs IL-HA systems meaning that both clay types behave similarly regarding desorption of As by phosphate/silicate. At low As loadings, up to 80% of As was desorbed by phosphate and silicate with no noticeable differences being observed between different As species, different types of clay, clay vs clay-HA or the type of desorbant (phosphate and silicate). The results of this study showed that HA sorption to Ca(2+)-homoionized clay minerals can increase As binding to the clay although the As sorbed to the clay-HA is also released to a greater extent by competing ions such as phosphate and silicate. Desorption of As depended on the initial loadings of As onto the clay/clay-HA. Based on our results, the effect of humic substances on sorption of As and on desorption of As by phosphate and silicate has to be considered in order to fully understand and evaluate the environmental behavior of As in natural environments.  相似文献   

17.
随着有色金属工业的发展,地表水的铊(Tl)污染问题已经对饮用水卫生安全构成严重威胁.在改性的基础上,采用实验室小试方法对"沸石吸附-混凝沉淀"工艺除Tl可行性及主要影响因素进行了研究。红外光谱(IR)和扫描电镜(SEM)结果表明,经壳聚糖改性后的沸石表面孔道增多,比表面积增大,有利于其吸附交换能力的提高.延长吸附时间和增加投加量,有利于去除效果的改善。对于Tl浓度不超过0.25μg/L的微污染原水,采用预先吸附10 min后进行混凝沉淀处理,可满足标准限值要求。改性沸石的吸附速度明显快于天然沸石。相对于单纯的混凝沉淀工艺而言,p H对"沸石吸附-混凝沉淀"工艺的影响更大。沸石除Tl最佳p H范围为8~9.5。综合考虑除Tl效果和对混凝沉淀的影响,改性沸石投加量宜控制在100~300 mg/L范围内。投加沸石对混凝除浊影响不大,低投加量下可以提高TOC去除率。  相似文献   

18.
Previous work in our laboratory indicated a weak interaction between ferric ion and several triazine/triazinone herbicides during a Fenton treatment process, and the intensity of the interaction was calculated. To further support the existence of this weak interaction, the adsorption of ametryn, a triazine herbicide, was investigated in kaolinite clay, humic acid, and soil under pseudo-Fenton conditions. At a low addition rate of ferric ion, the adsorption of ametryn in clay, humic acid, and soil was enhanced due to the decreased pH resulting from the hydrolysis of ferric ion. But the pH effect was totally neutralized and the adsorption of ametryn was significantly reduced by further addition of ferric ion, demonstrating the existence of the weak interaction between ametryn and ferric acid. Further study showed that the adsorption-reduction effect of ferric ion existed not only with ametryn but also with several other triazine/triazinone herbicides. This weak interaction may accelerate the desorption process during the remediation of triazine/triazinone herbicide-contaminated soil using a Fenton/Fenton-like treatment, but it may also impede the degradation of these herbicides.  相似文献   

19.
Contaminants in water are classified into different types based on their physical and chemical properties. Thus, more than one type of sorbents may be needed for their removal. In this article, a combination of vermiculite with palygorskite was studied for their simultaneous removal of ammonium and humic acid from simulated groundwater. Batch results showed that the Langmuir model described ammonium adsorption well with an adsorption capacity of 22 mg/g while the humic acid adsorption data fitted to the linear adsorption better, suggesting different removal mechanisms of these two types of contaminants. Kinetic studies showed an instantaneous removal of ammonium and humic acid. A column packed with mixture of equal volumes of vermiculite and palygorskite could treat 100 pore volumes for ammonium removal at an initial concentration of 10 mg/L and 500 pore volumes for humic acid removal at an initial concentration of 20 mg/L before the effluent concentrations exceeded the standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号