首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+.  相似文献   

2.
LiSrBO3 :Eu3+ phosphor is synthesized by a high solid-state reaction method, and its luminescent characteristics are investigated. The emission and excitation spectra of LiSrBO3:Eu3+ phosphors exhibit that the phosphors can be effectively excited by near ultraviolet (401 nm) and blue (471 nm) light, and emit 615nm red light. The effect of Eua+ concentration on the emission spectrum of LiSrBO3:Eu3+ phosphor is studied; the results show that the emission intensity increases with increasing Eu3+ concentration, and then decreases because of concentration quenching. It reaches the maximum at 3mol%, and the concentration self-quenching mechanism is the dipoledipole interaction according to the Dexter theory. Under the conditions of charge compensation Li+, Na+ or K+ incorporated in LiSrBO3, the luminescent intensities of LiSrBO3 :Eua+ phosphor are enhanced.  相似文献   

3.
We investigate the luminescence properties of Bi^3+ and RE^3+ (RE = Tb or Eu) in a Y3Ga5O12 (YGG) host system. The additional doping of Bi^3+ can enhance the luminescence of Th^3+ or Eu^3+ in this host. Energy transfer from Bi^3+ to Tb^3+ and Eu^3+ is observed and the mechanism of energy transfer is investigated. Mechanism of energy transfer can be explained as electric multipole interaction since the Bi^3+ emission band and Tb^3+ or Eu^3+ excitation band overlaps and the Bi^3+ emission intensity decreases while the intensity of Tb^3+ or Eu^3+ increases with the increase of Tb^3+ or Eu^3+ concentration. Therefore, Bi^3+ ion is a kind of efficient sensitizer to the Tb^3+ and Eu^3+ activators in the Y3Ga5O12 host.  相似文献   

4.
Absorption spectra of BiSbO4 are studied. The electronic structure calculated by the DFT shows that BiSbO4 is a semiconductor, with direct band gap 2.96 eV, which is consistent with UV-visible diffuse reflectance experiment. The host lattice emission band is located at 440 nm under VUV excitation. Eu^3+ and Pr^3+ doped samples have high luminescence efficiency in emitting red and green light, respectively. From the partial density of states, Eu^3+ doped emitting spectrum, and the host crystal structure parameters, the relationship between structure and optical properties is discussed. It is found that the Eu^3+ ions occupied Bi^3+ sites, and there could be an energy transfer from Bi^3+ ions to RE^3+ ions.  相似文献   

5.
The nanocrystal samples of titanium dioxide doped with europium ion (Eu3+/TiO2 nanocrystal) are synthesized by the sol-gel method with hydrothermal treatment. The Eu3+ contents (molar ratio) in the samples are 0, 0.5%, 1%, 2%, 3% and 4%. The X-ray diffraction, UV-Vis spectroscopy data and scanning electron microscope image show that crystallite size is reduced by the doping of Eu3+ into TiO2. Comparing the Raman spectra of TiO2 with Eu3+/TiO2 (molar ratio Eu3+/TiO2=1%, 2% and 4%) nanocrystals at different annealing temperatures indicates that the anatase-to-rutile phase transformation temperatures of Eu3+/TiO2 nanocrystals are higher than that of TiO2. This is due to the formation of Eu-O-Ti bonds on the surface of the TiO2 crystallite, as characterized by the X-ray photoelectron spectroscopy. The photoluminescence spectra of TiO2 in Eu3+/TiO2 nanocrystals are interpreted by the surface self-trapped and defect-trapped exciton relaxation. The photoluminescence of Eu3+ in Eu3+/TiO2 nanocrystals has the strongest emission intensity at 2% of Eu3+ concentration.  相似文献   

6.
 利用X射线衍射和Eu2+发射光谱方法研究了非晶玻璃SrB4O7在高温高压下的晶化。结果表明:在5.0 GPa压力下,200 ℃仍为玻璃态,只有几个强度极低的小峰,表明有晶化的迹象;600 ℃时已基本晶化,但为SrB4O7正交相与SrB4O7高压立方相二相共存;当温度提高到1 000 ℃时,晶化成了近单相的与常压SrB4O7粉末晶体相同的正交结构。伴随晶化度的加强,Eu2+发射强度增强,与X射线衍射结果相一致。  相似文献   

7.
The visible upconversion and near-infrared luminescence of Er3+ ions in germanate glass ceramics containing GaF2 nanocrystals are investigated. The nanocrystals are characterized by x-ray diffraction (XRD) and transmission electron microscopy, showing their mean sizes less than 20hm. High transmittance of the glass ceramics is displayed by absorption spectra. The upconversion luminescence intensity in the glass ceramics increases significantly with increasing temperature. Both the shifts of the XRD peaks and the Stark-split shown in the luminescence spectra indicate the entrance of the Er3+ ions into the CaF2 nanocrystals, which is confirmed by a Judd-Ofelt analysis. Possible mechanisms of the upconversion luminescence are analyzed.  相似文献   

8.
Europium-doped yttrium-silicon-oxide-nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2O7 to nitride YSi3N5 state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465 nm with 300 nm excitation and a characteristic red emission of Eu^3+ at 612 nm with 230 nm excitation. The YSi3N5:EU phosphor shows a broad emission band centred at 595nm with some sharp peaks of Eu^3+ with 325nm excitation. The absorption of the studied phosphors increases from 450 to 700hm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390 nm excitation.  相似文献   

9.
Various compositional photovoltaic cells based on the blend of poly(3-hexylthiophene) (P3HT) as donors and TiO2 nanocrystals as acceptors are fabricated and investigated. It is demonstrated that the blend ratio of P3HT and TiO2 nanocrystals could greatly influence the performance of the photovoltaic cells. The maximum of 0.411% in power conversion efficiency under AM 1.5, 100mW/cm2, and 44.4% of fill factor are obtained in the solar cell with the blend weight ratio 1:1 of P3HT and TiO2 nanocrystals. The function of nanocrystal composition is discussed in terms of the results of photoluminescence spectroscopy, atomic force microscopy, transmission electron microscopy, and charge transport I-V curve.  相似文献   

10.
The doubly doped (Bi3+ and Eu3+) GdVO4 powder is synthesized by hydrolyzed colloid reaction (HCR) technique and formation of material is confirmed by XRD measurement. Surface morphology has been studied by SEM measurement and the result shows uniform surface morphology. The average particle size observed by SEM is about 1 7m. The Fritsch particle sizer is used to study the particle size distribution. It distributes from O.15 to 3.57 7m. The small particle size (less than 5 7m) and the narrow particle size distribution, are the necessary requirements of good phosphor material. Photoluminescence result shows a narrow emission line of Eu3+ ion (4 nm FWHM) at 618 nm. The Eu3+ emission intensity is enhanced by a factor of five with the addition of small amount of Bi3+. The emission bands of VO43- and Bi3+ partially overlap with the excitation band of Eu3+. The process of energy transfer from Bi3+ to Eu3+ is discussed here. The energy transfer probability is strongly dependent upon the Bi3+ and Eu3+ concentrations, with a maximum for 0.2 mol % of Bi3+ and 3 mol % of Eu3+. It drastically decreases for higher concentrations. For photoluminescent applications, the quantum efficiency (QE) of a phosphor material is an important parameter. The QE of GdVO4:Bi,Eu(0.2,3) is 76%. The GdVO4:Bi,Eu(0.2,3) material is proposed as an efficient photoluminescent phosphor.  相似文献   

11.
The emission intensity of the peak at 612 nm (5D07F2) of the Eu3+ ions activated SnO2 nanocrystals (doped and coated) is found to be sensitive to the nanoenvironment. We have compared the luminescence efficiencies of the nanocrystals of SnO2 doped by Eu2O3 with those of SnO2 coated by Eu2O3 and we found that the intensities are significantly higher in coated nanocrystals. Furthermore, it is clear from luminescence intensity measurements that Eu3+ ions occupy low symmetry sites in the Eu2O3 coated SnO2 nanocrystal. The analysis suggests that the radiative relaxation rate is higher in Eu2O3 coated SnO2 nanocrystals than Eu2O3 doped SnO2 nanocrystals due to the asymmetric environment of Eu3+ ions in coated samples.  相似文献   

12.
Structural and magnetic properties of Fe-doped anatase TiO2 films fabricated by sol-gel spin coating are investigated. X-ray diffraction measurements reveal that Fe^3+ ions are incorporated into the TiO2 lattice. No ferromagnetism-related secondary phases and magnetic nanopaxticles are observed in the films. The presence of electron paramagnetic resonance signals at 9- 2.0 supports oxygen vacancies and/or defects generated in the films after annealing in vacuum. Magnetic measurements indicate that Fe-doped anatase TiO2 films are ferromagnetic at room temperature. These observations suggest that oxygen vacancies and/or defects axe energetically favorable for the long range Fe^3+-Fe^3+ ferromagnetic coupling in Fe-doped anatase TiO2 films.  相似文献   

13.
 首次采用高压高温方法合成了Sr2SiO4:Er3+Bi3+和SrSiO3:Er3+Bi3+发光材料,研究了合成压力、合成温度对发光特性的影响。与常压合成产物相比较,发光谱发生了红移;谱线半宽度显著增大;发光强度和量子发光效率下降。X射线衍射分析得出,SrSiO3:Er3+Bi3+发生了结构相变,Sr2SiO4:Er3+Bi3+结构未变但晶格参数发生了变化,且主衍射峰强度发生了反转。分析表明,发光特性的变化是压致晶场、库仑及自旋-轨道相互作用的变化引起的。  相似文献   

14.
The ferroelectric crystal Ba2TiSi2O8 with high second-order optical nonlinearity is precipitated in Sm^3+-doped BaO-TiO2-SiO2 glass by a focused 800hm, 250 kHz and 150fs femtosecond laser irradiation. No apparent blue and red emissions are observed at the beginning, while strong blue emission due to second harmonic generation and red emission due to the f-f transitions of Sm^3+ are observed near the focal point of the laser beam after irradiation for 25s. Micro-Raman spectra confirm that Ba2 TiSi2O8 crystalline dots and lines are formed after laser irradiation. The mechanism of the phenomenon is discussed.  相似文献   

15.
The novel vacuum ultraviolet (VUV) excited Na3 Y9O3 (BO3)8:Tb^3+ (NYOB:Tb^3+) green phosphor is prepared. Strong VUV photoluminescence and high quenching concentration of Tb^3+ (20 wt%) are observed in NYOB: Tb^3+ and the strong emission are correlated with the unique layer-type structure of NYOB. All the characteristic 4 f - 5d transitions of Tb^3+ and the host absorption band in VUV region are identified in the excitation spectrum. Based on the results, the energy levels scheme of Tb^3+ in NYOB:Tb^3+ is first established. This newly developed NYOB:Tb^3+ phosphor shows excellent optical properties when compared with the commercial Zn2SiO4:Mn^2+ and would be a potential VUV-excited green phosphor.  相似文献   

16.
A facile and energy saving sol-gel combustion method has been used to prepare La2Zr2O7 nanocrystallines. The pyrochlore La2Zr2O7 nanocrystals have been obtained at a relatively low temperature with the grain size ranging from 45 to 70 nm. Eu3+ and Dy3+ have been introduced into the La2Zr2O7 crystal structure, respectively, and the intense photoluminescence was observed. The relative intensity of electric dipole transition and magnetic dipole transition is considered for luminescence emission both of Eu3+ and Dy3+. The dependence of luminescence intensity on dopant concentration and the effect of Dy3+ co-doping on Eu3+ luminescence are also discussed.  相似文献   

17.
Nanocrystal samples (particle size about 90 nm) of Eu3+-doped rutile titanium dioxide (TiO2) nanocrystals (rutile Eu3+/TiO2 nanocrystals) were synthesized by the sol–gel method with hydrothermal treatment. The pressure effect on photoluminescence (PL) and Raman spectra of the rutile Eu3+/TiO2 nanocrystals was investigated with a diamond anvil cell under hydrostatic pressure condition. Raman spectra of the samples at high pressures indicated that the critical pressure for the transition from the rutile phase to a new baddeleyite-type phase was between 10 and 14.2 GPa. The position of Raman bands shifted to high wavenumbers and the PL intensity of 5D 07F 2 transition of Eu3+ decreased down to zero with the increase of pressure before the phase transition occurred. After releasing the pressure, the rutile phase was not recovered and a α-PbO2-type phase was observed at ambient pressure.  相似文献   

18.
In this Letter, 7F2 crystal field (CF) levels of surface Eu3+ in YVO4 nanocrystals are calculated employing a refined electrostatic point charge model, where surface states are simulated by point charges. Based on the theoretical 7F2 CF levels, emission spectra of YVO4: Eu3+ nanocrystals are assigned to Eu3+ under different local environments. and relaxation of selection rules by surface effect is discussed.  相似文献   

19.
By using an Ar^+ ion laser, a tunable Rh 6G dye laser (linewidth 0.5cm^-1) pumped by the second harmonic of a YAG:Nd laser and a Coherent 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, we detect the optical properties of Eu^3+-doped Y2SiO5 crystal. Persistent ,spectral hole burning (PSHB) are observed in the Eu^3+ ions spectral lines (^5 Do-T Fo transition) in the crystal at the temperature of 16K. For 15mW dye laser burning the crystal for 0.1 s spectral holes with hole width about 80 MHz both at 579.62nm and at 579.82nm are detected and the holes can remain for a long time, more than 10h.  相似文献   

20.
We report a thin film electroluminescent device with a three-layer structure (diamond/CeF3/SiO2 films), which has a luminance of 1.5 cd/m^2 at dc voltage 215 V. The electroluminescence spectrum at room temperature shows that the main peaks locate at 527 and 593nm, which are attributed to isolated emission centers of Ce^3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号