首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A self-referencing technique utilizing two microelectrodes on a ceramic-based multisite array is employed for confirmation and elimination of interferences detected by enzyme-based microelectrodes. The measurement of L-glutamate using glutamate oxidase was the test system; however, other oxidase enzymes such as glucose oxidase can be employed. One recording site was coated with Nafion with L-glutamate oxidase and bovine serum albumin (BSA) cross-linked with glutaraldehyde while the other had Nafion with BSA cross-linked with glutaraldehyde. Differences in the chemistry of the two recording sites allowed for identification and elimination of interfering signals to be removed from the analyte response. The electrode showed low detection limits (LOD = 0.98 +/- 0.09 microM, signal-to-noise ratio of 3), fast response times (T90 approximately 1 s), and excellent linearity (R2 = 0.999 +/- 0.000) over the concentration range of 0-200 microM for calibrations of L-glutamate in vitro. The selectivity and dimensions of the multisite electrode allow in vivo glutamate measurements. This electrode has been applied to in vivo measurements of the clearance of locally applied glutamate and release of glutamate in the prefrontal cortex of anesthetized rats. In addition, a aimilar approach has been applied to the development of a microelectrode for measures of glucose.  相似文献   

2.
Acetylcholine (ACh) and choline (Ch) are important neuroactive molecules, yet detection of these substances in vivo presents significant analytical challenges. New multienzyme amperometric biosensors are presented here with measurement of physiologically relevant levels of ACh and Ch in vivo. Poly(m-(1,3)-phenylenediamine) (pmPD) electropolymerized on a platinum iridium wire (Pt) served as a template for immobilization of enzymes. A multienzyme layer containing choline oxidase (ChOx) and ascorbic acid oxidase (AAO) for a Ch sensor or ChOx, acetylcholinesterase (AChE), and AAO for a ACh/Ch sensor was immobilized with bovine serum albumin by cross-linking with glutaraldeyhyde. The pmPD enzyme sensors displayed enhanced sensitivity, stability, and selectivity compared to the same multienzyme systems immobilized to solvent cast Nafion and cellulose acetate-modified Pt. Sensor response was linear up to 100 microM ACh or Ch. Detection limits were 0.66 +/- 0.46 microM ACh and 0.33 +/- 0.09 microM Ch, and response times were <1 s. Selectivity for Ch and ACh relative to potential interferences and pharmacological agents commonly used to examine cholinergic physiology was demonstrated. Temperature and pH dependence and the effect of storage conditions on sensor sensitivity and selectivity were determined. Exogenous and endogenous Ch and ACh were measured in the rat brain in vivo.  相似文献   

3.
Interest in elucidating the mechanisms of action of various classes of anticancer agents and exploring the pathways of the induced-nitric oxide (NO) release provides an impetus to conceive a better designed approach to locally detect NO in tumors, in vivo. We report here on the first use of an electrochemical sensor that allows the in vivo detection of NO in tumor-bearing mice. In a first step, we performed the electrochemical characterization of a stable electroactive probe, K4Fe(CN)6, directly injected into the liquid microenvironment especially created around the electrode in the tumor. Second, the ability of the inserted electrode system to detect the presence of NO itself in the tumoral tissue was achieved by using the chemically modified Pt/Ir electrode as NO sensor and two NO donor molecules: diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium 1,2-diolate (DEA-NONOate) and (Z)-1-[N-(2-aminopropyl)-N-(2-ammonio propyl)amino]diazen-1-ium 1,2-diolate (PAPA-NONOate). These two NO donor molecules allowed proving the electrochemical detection of (i) directly injected exogenous NO phosphate buffer solution into the tumor (decomposed DEA-NONOate) and (ii) biomimetically induced endogeneous release of NO in the tumoral tissue, upon injection of PAPA-NONOate into the tumor. This approach could be applied to the in vivo study of candidate anticancer drugs acting on the NO pathways.  相似文献   

4.
In vivo calibration of microdialysis probes for exogenous compounds.   总被引:8,自引:0,他引:8  
Several approaches for calibrating microdialysis probes for exogenous compounds in vivo are described which avoid the error introduced by in vitro calibration. These methods are based on establishing a steady state of the exogenous compound by a continuous (zero-order) iv infusion. The steady-state concentration is estimated by three methods that directly determine the in vivo concentration. The methods are (a) extrapolation of dialysate concentrations at various flow rates to the concentration at zero flow, (b) dialysis with concentrations of analyte added to the perfusion medium above and below the expected concentration to determine the concentration at no net flux across the membrane, and (c) dialysis at a very slow perfusion rate (57 nL/min) where the recovery is expected to be better than 90%. Using these approaches, the recovery for cocaine in the brain was found to be (8.9 +/- 0.68)%, as compared to an in vitro recovery of (5.1 +/- 0.18)% at 24 degrees C and (7.4 +/- 0.18)% at 37 degrees C, at a perfusion rate of 1.2 microL/min through a 0.3- X 2-mm microdialysis probe. The in vivo concentration of cocaine in the rat brain for an intravenous dose of 0.3 mg/kg per min was found to be 17.1 +/- 1.3 microM.  相似文献   

5.
Intracellular nitric oxide (NO) production in a microfluidic endothelium is detected using fluorescence microscopy. Bovine pulmonary artery endothelial cells (bPAECs) were loaded with the fluorescence probe diaminodifluorofluorescein diacetate (DAF-FM DA), and the subsequent fluorescent DAF-FM DA/NO adduct was measured. Solutions of bradykinin, a well-known stimulus of endothelium-derived NO, activated nitric oxide synthase (NOS) in the immobilized bPAECs. This activation was inhibited using l-nitro arginine methyl ester (L-NAME), a competitive inhibitor of NOS. Importantly, the NO production was also stimulated with adenosine triphosphate (ATP) using concentrations as low as 1 microM. Previous reports on stimulating NO production using an immobilized endothelium in microfluidic channels were limited by the requirement of ATP concentrations of at least 100 microM, a value that is not physiologically relevant. The ability to monitor NO production with ATP concentrations that are similar to in vivo levels of ATP in the microcirculation represents a major advance in the use of microfluidic technology as an in vitro model of the microcirculation.  相似文献   

6.
ATP is a recognized stimulus of nitric oxide synthase and is released from red blood cells (RBCs) upon deformation. The objective of this work is to demonstrate that RBCs stimulate nitric oxide production in platelets by employing a continuous flow analysis system in which the stream contains both RBCs and platelets. Here, two drugs known to improve blood flow in vivo (pentoxyfilline and iloprost) are shown to increase both the release of RBC-derived ATP and the production of platelet-derived NO. A flow-based chemiluminescence assay (in vitro) was employed to quantitatively determine the amount of ATP released from erythrocytes subjected to flow-induced deformation. Prior to being subjected to flow, erythrocytes were incubated in the absence or presence of 4.8 microM pentoxyfilline or 80 nM iloprost. Erythrocytes obtained from rabbits (n=22) that were subjected to flow released 239 +/- 29 nM ATP. When treated with pentoxyfilline, the ATP released from the flowing RBCs increased to 450 +/- 94 nM ATP. An increase in RBC-derived ATP was also measured for iloprost-incubated RBCs in flow (362 +/- 45 nM ATP). Importantly, platelets that were loaded with diaminofluorofluorescein diacetate, an intracellular fluorescence probe for NO, exhibited increases in fluorescence intensity by 16% in the presence of RBCs treated with pentoxyfilline and a 10% increase when treated with iloprost. When the ATP release from the RBCs was inhibited with glybenclamide, the platelet fluorescence intensity decreased by 25 and 51% for RBCs incubated with pentoxyfilline and iloprost, respectively. In an experiment not involving the RBC, inhibition of the P2x receptor on the platelets (an ATP receptor) resulted in no increase in platelet NO production, suggesting that the NO production in the activated platelet is due to ATP.  相似文献   

7.
Oxygen consumption of individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). A probe microelectrode was used to scan near a single embryo surface in a culture medium to monitor the oxygen reduction current at 37 degrees C, under a water-saturated atmosphere of 5% CO2 and 95% air. The oxygen concentration profiles near the embryos were in good agreement with the theoretical spherical diffusion. When an embryo reached the stage of a morula with a 74-microm radius on day 6 after in vitro fertilization, the oxygen concentration difference (deltaC) between the bulk solution and the morula surface was 6.90 +/- 1.35 microM. The oxygen consumption rate (F) of the single morula was estimated to be (1.40 +/- 0.27) x 10(-14) mol s(-1). After the SECM measurement, the embryo was continuously cultured for another 2 days and grew to the stage of a blastocyst with a 100-microm radius. For the blastocyst, the deltaC values for the inner cell mass side and the trophoblast side were 16.40 +/- 1.83 and 9.14 +/- 1.68 microM, respectively. The oxygen consumption rate of the blastocyst was found to be in the range of (2.50 +/- 0.46) x 10(-14) mol s(-1) < F < (4.49 +/- 0.50) x 10(-14) mol s(-1). We have carried out SECM measurements for 19 embryos, and the results were compared in detail with these from an optical microscopic observation. The deltaC values for the morulae on day 6 after in vitro fertilization were strongly related to the morphological embryo quality. The morulae showing a larger deltaC value developed into blastocysts of a larger size, and the deltaC value after the subsequent 2 days of cultivation was found to be increased.  相似文献   

8.
This study demonstrates the application of composite multi-walled carbon nanotube (MWCNT) polyvinylchloride (MWNT-PVC) based on 7-(2-hydroxy-5-methoxybenzyl)-5,6,7,8,9,10-hexahydro-2H benzo [b][1,4,7,10,13] dioxa triaza cyclopentadecine-3,11(4H,12H)-dione ionophore for gallium sensor. The sensor shows a good Nernstian slope of 19.68 ± 0.40 mV/decade in a wide linear range concentration of 7.9 × 10(-7) to 3.2 × 10(-2)M of Ga(NO(3))(3). The detection limit of this electrode is 5.2 × 10(-7)M of Ga(NO(3))(3). This proposed sensor is applicable in a pH range of 2.7-5.0. It has a short response time of about 10s and has a good selectivity over nineteen various metal ions. The practical analytical utility of this electrode is demonstrated by measurement of Ga(III) in river water.  相似文献   

9.
The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.22 +/- 0.50 microM ATP). Microscopic images indicate that erythrocytes, when being pumped through the microchip channels, migrate toward the center of the channels, leaving a cell-free or skimming layer at the walls of the channel, a profile known to exist in circulatory vessels in vivo. A comparison of the amounts of ATP released from RBCs mechanically deformed in microbore tubing (2.54 +/- 0.15 microM) vs a microchip (2.59 +/- 0.32 microM) suggests that channels in microchips may serve as functional biomimics of the microvasculature. Control studies involving diamide, a membrane-stiffening agent, suggest that the RBC-derived ATP is not due to cell lysis but rather physical deformation.  相似文献   

10.
Nitric oxide (NO) is quantitatively determined in platelets prior to, and after, stimulation with adenosine triphosphate (ATP) or activation with adenosine diphosphate (ADP). Platelets obtained from the whole blood of rabbits were loaded with the fluorescence probe diaminodifluorofluorescein diacetate (DAF-FM DA), and the subsequent NO production was measured as a fluorescent benzotriazole. Experiments were performed to determine the effect of probe concentration and probe incubation time in the platelets prior to measurement of the fluorescence. This information, combined with the method of multiple standard additions, was then employed to determine the moles of intracellular NO in the platelets (2.7 +/- 0.3) x 10(-16) mol of NO/platelet and the basal level of extracellular NO in the platelet sample (9.9 +/- 2.2) x 10(-18) mol of NO/platelet. Moreover, this method was used to quantitatively determine the amount of NO released from platelets whose NO production was stimulated with ATP (a nitric oxide synthase stimulus) or ADP, a substance known to result in NO production through platelet aggregation. When stimulated with ATP, the NO released from the platelets was determined to be (2.0 +/- 0.1) x 10(-17) mol of NO/platelet. When activated with ADP, the platelets released (2.8 +/- 0.3) x 10(-17) mol of NO/platelet. The difference between the extracellular basal levels of NO and that after stimulation with either ATP or ADP is in agreement with current estimates of NO release from platelets. Therefore, we conclude that a fluorescence determination of NO using the DAF family of probes, in combination with the method of multiple standard additions, can be employed to quantitatively determine the basal levels of NO in platelets, as well as the amount of NO released from stimulated and/or activated platelets.  相似文献   

11.
Glucose gradients generated by an artificial source and beta-cells were measured using an enzyme-based glucose microsensor, 8-microm tip diameter, as a self-referencing electrode. The technique is based on a difference measurement between two locations in a gradient and thus allows us to obtain real-time flux values with minimal impact of sensor drift or noise. Flux values were derived by incorporation of the measured differential current into Fick's first equation. In an artificial glucose gradient, a flux detection limit of 8.2 +/- 0.4 pmol.cm(-2).s(-1) (mean +/- SEM, n = 7) with a sensor sensitivity of 7.0 +/- 0.4 pA/ mM (mean +/- SEM, n = 16) was demonstrated. Under biological conditions, the glucose sensor showed no oxygen dependence with 5 mM glucose in the bulk medium. The addition of catalase to the bulk medium was shown to ameliorate surface-dependent flux distortion close to specimens, suggesting an underlying local accumulation of hydrogen peroxide. Glucose flux from beta-cell clusters, measured in the presence of 5 mM glucose, was 61.7 +/- 9.5 fmol.nL(-1).s(-1) (mean +/- SEM, n = 9) and could be pharmacologically modulated. Glucose consumption in response to FCCP (1 microM) transiently increased, subsequently decreasing to below basal by 93 +/- 16 and 56 +/- 6%, respectively (mean +/- SEM, n = 5). Consumption was decreased after the application of 10 microM rotenone by 74 +/- 5% (mean +/- SEM, n = 4). These results demonstrate that an enzyme-based amperometric microsensor can be applied in the self-referencing mode. Further, in obtaining glucose flux measurements from small clusters of cells, these are the first recordings of the real-time dynamic of glucose movements in a biological microenvironment.  相似文献   

12.
Conditions for the adhesion of bovine pulmonary artery endothelial cells (bPAECs) in microbore tubing of 250-microm i.d. are described. When immobilized to the lumen of microbore tubing, these cells represent a mimic of a circulatory vessel's endothelium. The microbore tubing is coated with 100 microg mL(-1) fibronectin in order to promote bPAEC adhesion to the lumen of the tubing. A series of micrographs of the cells inside of the tubing indicates that approximately 3.5 h is necessary for cell adhesion. In this study, adenosine triphosphate (ATP) is used to induce the release of nitric oxide from the endothelium mimic. The endothelium-derived NO is detected amperometrically at a parallel flow cell containing a glassy carbon working electrode modified with Nafion. Results indicate that detectable amounts of NO are only produced by the endothelium mimic when ATP is present in the buffer. The typical concentration of NO produced by the endothelium mimic upon the introduction of 100 microM ATP is approximately 0.80 microM. Based on the injection volume of ATP and the estimated number of cells on the tubing lumen, this value corresponds to approximately 1 amol of NO/cell. Moreover, shear stress alone does not provide the agonistic effect required for NO production in the submicromolar range.  相似文献   

13.
Zhang M  Liu K  Gong K  Su L  Chen Y  Mao L 《Analytical chemistry》2005,77(19):6234-6242
This study describes a novel analytical system integrating in vivo microdialysis sampling with a radial thin-layer flow cell with a single-walled carbon nanotube (SWNT)-modified glassy carbon electrode as working electrode for continuous and on-line monitoring of ascorbate depletion in the rat striatum induced by global ischemia. The SWNTs, especially those after vacuum heat treatment at 500 degrees C, are found to be able to enhance the electron-transfer kinetics of ascorbate oxidation at a low potential (ca. -50 mV) and possess a strong ability against electrode fouling. These properties essentially make it possible to determine ascorbate with a good stability and high selectivity against catecholamines and their metabolites and other electroactive species of physiological levels. While being integrated with in vivo microdialysis to assemble an on-line analytical system, the electrode is proved useful for continuous and sensitive monitoring of the basal dialysate level of ascorbate and its depletion in the rat striatum induced by global ischemia. The basal dialysate level of ascorbate is determined to be 5.0 +/- 0.5 microM (n = 5) and a 50 +/- 10% (n = 3) depletion is recorded for the basal ascorbate after 4 h of global ischemia.  相似文献   

14.
Zhou Y  Zhi J  Zou Y  Zhang W  Lee ST 《Analytical chemistry》2008,80(11):4141-4146
Cytochrome c (Cyt c) was covalently immobilized on a boron-doped nanocrystalline diamond (BDND) electrode via surface functionalization with undecylenic acid methyl ester and subsequent removal of the protecting ester groups to produce a carboxyl-terminated surface. Cyt c-modified BDND electrode exhibited a pair of quasi-reversible and well-defined redox peaks with a formal potential (E(0)) of 0.061 V (vs Ag/AgCl) in 0.1 M phosphate buffer solution (pH 7.0) and a surface-controlled process with a high electron transfer constant (ks) of 5.2 +/- 0.6 s(-1). The electrochemical properties of as-deposited and Cyt c-modified boron-doped microcrystalline diamond (BDMD) electrodes were also studied for comparison. Investigation of the electrocatalytic activity of the Cyt c-modified BDND electrode toward hydrogen peroxide (H2O2) revealed a rapid amperometric response (5 s). The linear range of response to H2O2 concentration was from 1 to 450 microM, and the detection limit was 0.7 microM at a signal-to-noise ratio of 3. The stability of the Cyt c-modified BDND electrode, in comparison with that of the BDMD and glassy carbon counterpart electrodes, was also evaluated.  相似文献   

15.
The electrode response time and the measured concentrations during dynamic catecholamine changes were compared using constant potential amperometry and fast-scan cyclic voltammetry. The amperometric response to a rectangular pulse of catecholamine is more rectangular than the cyclic voltammetric response; however, the response times are very similar when, during cyclic voltammetry, the temporal lag due to adsorption and desorption of catecholamine to the electrode is removed by deconvolution. Deconvolution of cyclic voltammetry data was applied to stimulated dopamine release in vivo, allowing for modeling of release and uptake kinetics and to measure catecholamine release from single cells, resulting in better resolution of peaks from single vesicles. In vitro postcalibrations were performed to calculate concentrations of catecholamine measured with cyclic voltammetry and amperometry. The addition of 600 microM ascorbic acid to the postcalibration buffer, allowing a catalytic reaction to regenerate dopamine, resulted in similar calculated concentrations for stimulated release of dopamine using amperometry and cyclic voltammetry. Using deconvoluted cyclic voltammetry to remove the response time lag and adding ascorbic acid to the calibration buffer, the shape and concentration of dynamic catecholamine changes are very similar when measured with constant potential amperometry and cyclic voltammetry.  相似文献   

16.
The effect of clobetasol 17-propionate (CP), a potent corticosteroid, in various cream bases on the permeation through artificial membrane was sought. Four formulations were then chosen for a further in vivo skin blanching assay. After calculation of the relationship between in vivo flux0-8hr determined from a surface recovery technique and in vitro release rate0-8hr of CP from various formulations, a high correlation coefficient of 0.9996 was achieved. Therefore, the in vitro release study could be used as an index to predict and evaluate the in vivo penetration capacity of CP cream to screen the effective formulation preclinically. After a series of in vivo investigations in this study, it was concluded that myristic acid-added formulations may show a bioequivalence with commercial Dermovate®. Furthermore, the flux calculated from the surface recovery technique and ΔE* detected from the skin blanching assay may be useful as parameters evaluating the quality and effectiveness of CP cream.  相似文献   

17.
The development and in vivo analytical performance of a nitric oxide (NO)-releasing amperometric oxygen sensor with greatly enhanced thromboresistivity are reported. Gas permeable coatings formulated with cross-linked silicone rubber (SR) containing NO-generating compounds (diazeniumdiolates) are shown to release NO for extended periods of time (> 20 h) while reducing platelet adhesion and activation. Oxygen-sensing catheters prepared by dip-coating the NO-releasing films over the outer SR tubes of the implantable devices display similar analytical response properties in vitro (sensitivity, selectivity, response times) when compared to analogous sensors prepared without the NO release coatings. Superior analytical accuracy (relative to blood PO2 values measured in vitro) and greatly reduced thrombus formation on the outer surface of the sensors are observed in vivo (in canine model) with the NO release PO2 sensors compared to control sensors (without NO release) implanted simultaneously within the same animals. Based on these preliminary studies, the use of NO release polymers to fabricate catheter-style chemical sensors may be a potential solution to lingering biocompatibility and concomitant performance problems encountered when attempting to employ such devices for continuous intravascular measurements of blood gases and electrolytes.  相似文献   

18.
D-Serine was detected in dialysate collected from the rat striatum using an online microdialysis-CE-LIF instrument. Dialysate can be analyzed every 12.5 s using the online instrument, giving much better temporal resolution than previously possible for D-serine. Basal concentrations of D-serine (8 +/- 2 microM), glutamate (0.8 +/- 0.2 microM), GABA (0.11 +/- 0.04 microM), and L-serine (23 +/- 4 microM) were measured. Increases in the concentrations of these neurochemicals induced by the introduction of high-K+ aCSF were quantitated. Notably, an increase in D-serine concentration in response to high-K+ aCSF was observed for the first time. The identity of the D-serine peak was confirmed unambiguously using D-amino acid oxidase to selectively remove D-serine from a dialysate sample. The microdialysis-CE-LIF instrument was able to monitor this enzymatic reaction as it proceeded over a period of 60 min, demonstrating that online microdialysis-CE-LIF is not only useful in monitoring in vivo dynamics but can also be used to monitor other chemical systems.  相似文献   

19.
The 204- and 229-nm excited UV resonance Raman spectra of wastewater solutions containing sodium nitrite and nitrate were measured in the concentration range 7 microM to 3.5 mM (0.1-50 ppm nitrogen). The other chemical species present in wastewater do not interfere with Raman measurements of NO2-/NO3- bands. We observe detection limits of < 14 microM (< 200 ppb) for both NO2- and NO3-. UV resonance Raman spectroscopy appears to be an excellent tool for on-line monitoring of NO2-/NO3- in wastewater for the real-time control of water treatment plants.  相似文献   

20.
Cserey A  Gratzl M 《Analytical chemistry》2001,73(16):3965-3974
Despite the multifaceted biomedical significance of NO, little progress has been achieved so far in the quantitative understanding of the signal transduction mechanisms where NO is involved. To help progress in this area, we propose a simple electrochemical NO sensor here, consisting of a glass sealed platinum microdisk electrode coated with cellulose acetate to reduce both surface fouling by proteins and response to potential interferences. A differential amperometry protocol is optimized to improve selectivity and provide a stationary oxidation state of the platinum surface, which prevents loss in sensitivity during long-term use. We found the oxidation of NO by O2 second order in [NO] with a rate constant of (8.0 +/- 0.4) x 10(6) M(-2) s(-1), in good agreement with literature data obtained by other than electrochemical methods. The release rates of NO detected in cultures of activated macrophages were on the order of 20 pmol/ (10(6)cells s) and correlated well with the nitrite content determined by the spectrophotometric Griess assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号