首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
通过在扩张腔的径向和轴向布置周期性的具有C型共振腔的Helmholtz共振器(Helmholtz Resonators with C-type Resonators,CHR),来提高扩张腔式消声器低频段声学性能,在提出旁支含CHR管道系统声学性能等效计算模型的基础上,采用数值解析法计算该新型消声器的声学性能,且通过有限元法证明理论分析方法的正确性。研究表明:在扩张腔的径向和轴向布置周期CHR可提高扩张腔式消声器低频段声学性能,扩张腔径向和轴向CHR的布置方式及其颈部参数对消声器的声学性能有较大影响。研究结果将为提高扩张腔式消声器低频段的声学性能提供一种新的方法和途径。  相似文献   

2.
声学性能和空气动力学性能是评价消声器的两项重要指标,锥管结构因其良好的空气动力学性能和低频消声性能受到相关研究人员的关注。运用有限元数值计算方法,以传递损失作为评价指标,探索其结构参数对扩张式消声器消声性能的影响。研究发现,随着锥角增大,锥管消声频带向高频方向扩展;锥管长度主要影响消声带宽;扩散管口与收缩管口面积比主要影响消声峰值;锥管结构运用于扩张式消声器中对传递损失曲线具有移频、降幅、改善通过频率处消声性能的作用。  相似文献   

3.
应用有限元法分析进出口管同轴扩张室式消声器的声学性能,计算其传递损失并与一维平面波理论计算对比,分析一维平面波理论的适用范围。通过分析出口管偏置消声器,双出口管消声器和两腔消声器的声学性能表明:出口管位置和数量影响消声器中高频消声性能,而两腔消声器则能明显改善消声器中低频的消声效果。  相似文献   

4.
采用声学模态叠加法建立单腔扩张式消声器传递损失计算模型,然后通过Matlab编程实现单腔扩张式消声器传递损失的数值计算。在此基础上,比较声学模态叠加法、有限元法和基于平面波假定的经典公式法在计算单腔扩张式消声器传递损失上的差别,研究单腔扩张式消声器膨胀段尺寸对传递损失的影响。结果表明,对于平面入射波,声学模态叠加法可用于单腔扩张式消声器各频段传递损失的计算;增大膨胀段的半径能有效提高低频段的传递损失,但对高频段的影响较小;随着膨胀段宽度的增大,传递损失的峰值向低频移动,传递损失最大的频段向高频移动。  相似文献   

5.
传统内插式吸气消声器腔室之间密封性差,影响消声器消声性能和阻力特性,为解决这一问题,设计一种新结构吸气消声器,通过初步实验对比,证明新吸气消声器腔室密封性好,且具有较好的声学性能和阻力特性,可使压缩机声功率级降低1.87 dB,制冷量提高7.4 W,性能系数提高0.016。为进一步提高新消声器的消声性能,利用声学分析软件LMS Virtual. Lab 进行声学仿真模拟,分析其引流管长度、引流管通流截面宽度、扩张孔位置和出口内插管长度等内部结构参数对传递损失的影响,优化内部结构参数。最终,压缩机声功率级降低2.51 dB,制冷量提高5.63W,性能系数提高0.015。  相似文献   

6.
传统内插式吸气消声器腔室之间密封性差,影响消声器消声性能和阻力特性,为解决这一问题,设计一种新结构吸气消声器,通过初步实验对比,证明新吸气消声器腔室密封性好,且具有较好的声学性能和阻力特性,可使压缩机声功率级降低1.87 dB,制冷量提高7.4 W,性能系数提高0.016。为进一步提高新消声器的消声性能,利用声学分析软件LMS Virtual. Lab 进行声学仿真模拟,分析其引流管长度、引流管通流截面宽度、扩张孔位置和出口内插管长度等内部结构参数对传递损失的影响,优化内部结构参数。最终,压缩机声功率级降低2.51 dB,制冷量提高5.63W,性能系数提高0.015。  相似文献   

7.
为提高空调抗性消声器解析设计选型的准确性,分别建立扩张室消声器、插入管消声器及连体消声器的解析模型,通过解析模型研究消声器结构参数对消声性能的影响,并利用声学分析软件对关键结构参数进行修正,确定修正方法。修正后消声频响曲线与仿真计算基本重合,修正后的消声频率误差控制在±2%以内,表明修正后的解析模型具有较高的准确度。  相似文献   

8.
应用三维全局弱式无网格方法求解膨胀腔消声器的声学模态,使用无网格径向基函数点插值法求解三维形函数,使用伽辽金加权残数法离散系统方程,最终求得三维声学模态。计算某简单膨胀腔消声器前23阶三维声学模态频率,并且与有限元计算结果对比,相对误差均在1%以内,验证了运用三维无网格方法计算声学模态的正确性。进而分析模态振型图,改进消声器结构,优化消声性能。  相似文献   

9.
传统的消声器声学性能计算和实验测量都是在消声器进出口管道作为平面波声场的条件下进行,当进出口管道内出现有高阶模态激发的三维声场时,这些计算方法和实验测量方法就不再适用。由此,采用消声器进出口管道内加径向隔板的方法来计算消声器的声学性能,当原来管道声场中出现高阶模态时,仍然可以用平面波方法计算消声器的传递损失。应用该方法对进气滤清消声器进行传递损失数值计算,在原来进出口管道的平面波声场范围内,计算结果与传统方法计算结果均接近实验的测量结果,验证了该方法预测消声器声学性能的可行性。进而在所设计的消声器中频声学性能实验测试台架上,用声波分解法对阻性消声器进行传递损失测试,实验测量结果和有限元仿真结果也吻合良好。  相似文献   

10.
压缩机消声器的声学特性测试分析及其改进研究   总被引:1,自引:0,他引:1  
基于压缩机的实测分析 ,对现有的两种消声器进行了声学理论分析 ,运用声学四端网络法对现有的压缩机消声器进行了研究 ,得到消声器的插入损失等声学特性。在此基础上 ,提出了新的内插管双扩张室消声器设计 ,取得了 3dBA以上的降噪效果 ,并且没有功率上的损失  相似文献   

11.
组合式穿孔管消声器声学仿真   总被引:1,自引:0,他引:1  
运用声学有限元法,对三种组合结构的穿孔管消声器进行声学仿真计算,对比分析不同穿孔率对上述消声器声学性能的影响。并对某大型穿孔管消声器的整体声学性能进行仿真计算,结果表明其1000HZ以下中低频段的消声效果不佳,为后续改进工作提供某些依据。  相似文献   

12.
冰箱压缩机消声器声学特性的数值分析   总被引:2,自引:1,他引:1  
分析全封闭往复活塞冰箱压缩机的消声器消声性能。利用软件建立不同结构形状进气消声器的有限元模型,通过导入声学软件进行计算,获得一腔室,两腔室消声器和复杂形状消声器内部声场的声压分布及传递损失。分析结构参数对消声性能的影响。  相似文献   

13.
内插管长度是影响压缩机排气消声器声学性能的一项重要结构参数.以压缩机实际工作频段为前提条件,以噪声值为优化目标对内插管长度进行优化,采用数值模拟方法研究了该频段范围内内插管长度与其传递损失的关系,并利用正弦函数法构建两者之间的拟合曲线,获得传递损失随内插管长度的变化规律,并选取数据点验证该拟合曲线的准确性;顺而依据传递...  相似文献   

14.
分别对电冰箱压缩机半直接吸气消声器和直接吸气消声器的流场和声场进行数值模拟,对其流动特性和声学性能进行对比分析。研究成果可用于预测电冰箱压缩机消声器的综合性能,为消声器的设计、选型及结构优化提供理论依据。  相似文献   

15.
采用三维有限元法对某车型排气消声器进行优化设计,根据传递导纳理论对消声器穿孔管和穿孔板进行处理,建立数值模型并进行三维声场仿真分析,获得主副消声器总成的传递损失;运用双负载四传声器法测试消声器传递损失,测试结果表明三维有限元法预测消声器声学性能有较高的精度,根据仿真结果和消声器设计原理,对主消声器进行优化,可提高排气系统声学性能,满足汽车噪声排放法规的要求。  相似文献   

16.
分析某型号压缩机吸气消声器存在的不足,在测试压缩机吸气通道噪声源频谱的基础上提出消声器改进方案。该方案通过修改消声器内部结构来提高其在吸气噪声源峰值频率处的传声损失。采用声学有限元方法对改进前后消声器方案的传声损失进行仿真,仿真结果显示改进后的消声器在低频噪声源峰值频率处取得明显效果。最后,通过装机试验对新方案消声器的降噪效果进行验证,结果表明该型号压缩机低频噪声峰值明显降低,且总噪声幅值平均降低1.4 dB(A)。  相似文献   

17.
摘要:吸气消声器主要用于减弱制冷剂吸入压缩部分时产生的进气噪声。针对目前用于往复式压缩机吸气消声器消声频带窄,中高频消声效果不佳的特点,设计出一种多腔室组合的消声器,综合考虑消声器的声学性能和流体特性。在Pro/E中建模完成后,导入ANSYS ICEM CFD中划分网格,在声学仿真软件中分别对最初和新设计后的消声器进行声学仿真。比较两种消声器的传递损失,数值仿真结果显示,新设计的消声器低频消声效果有所降低,中高频消声效果良好,整体消声量提高。最后在 Fluent中仿真消声器的流体性能,以压力损失作为衡量流体性能的标准,得出在设计消声器时,不能为了提高声学性能设计过多的腔室。  相似文献   

18.
摘 要:首先对某款现有挖掘机排气消声器进行声学分析,采用声学软件LMS Virtual. Lab计算出该消声器各频段的传递损失(TL)。然后分析不同结构参数对消声器消声性能的影响,根据分析结果优化其结构。最后比较分析结果,消声器的消声性能得到进一步的提高,为消声器的优化设计提供参考数据。  相似文献   

19.
消声器是最常用的用于控制车辆噪声的消声装置,由于消声器结构一般较为复杂,很难再用纯粹的理论方法算出正确的结果。本文利用声学软件SYSNOISE计算消声器的传递损失,并研究了扩张比、插入管深度等因素对消声效果影响,为消声器的设计、优化提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号