首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
用球-平面接触微动设备研究了316L不锈钢微动损伤速率随微动时间的变化,解析了316L不锈钢不同微动阶段的损伤机制.316L不锈钢微动分三个阶段第一阶段为微突体接触机制,犁沟损伤严重;第二阶段缝隙腐蚀的发生发展成为影响微动的主导因素;第三阶段是腐蚀疲劳微断裂所致剥层机制为主的损伤过程.力学化学交互作用分量在稳定阶段占损伤的60%以上,对316L不锈钢微动损伤影响显著;力学分量随微动过程的进行线性下降,腐蚀分量线性增长,但力学因素是材料微动损伤的主要因素.  相似文献   

2.
用球-平面接触微动设备研究了316L不锈钢微动损伤速率随微动时间的变化,解析了316L不锈钢不同微动阶段的损伤机制.316L不锈钢微动分三个阶段:第一阶段为微突体接触机制,犁沟损伤严重;第二阶段缝隙腐蚀的发生发展成为影响微动的主导因素;第三阶段是腐蚀疲劳微断裂所致剥层机制为主的损伤过程,力学化学交互作用分量在稳定阶段占损伤的60%以上,对316不锈钢微动损伤影响显著,力学分量随微动过程的进行线性下降,腐蚀分量线性增长,但边学因素是材料微动损伤的主要因素。  相似文献   

3.
316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究   总被引:5,自引:1,他引:5  
采用球-平面接触设备,对轧制固溶316L不锈钢不不同NaCl溶同动过程中,表面钝化膜的自修复行为进行了研究,讨论了溶液腐蚀特性及缝隙腐蚀行为对微动过程的影响,结果表明,溶液腐蚀特性的改变引起材料钝化膜自修复行为的差异,但不显著,在去离子水溶液中,316L不锈钢表面钝化膜保护了较高的自修复能力,稳定阶段表面钝化膜自修复约占平衡态下钝化膜厚度的17%,说明316L不锈钢表面钝化膜在微动过程并能长期有效  相似文献   

4.
AISI316不锈钢腐蚀磨损交互作用的研究   总被引:1,自引:0,他引:1  
采用电化学方法、微观形貌观察以及失重法分析研究了AISI 316不锈钢和Al2O3陶瓷摩擦副在模拟海水中的腐蚀磨损行为,探讨了摩擦对不锈钢腐蚀行为的影响以及腐蚀磨损交互作用。结果表明,在本实验条件下摩擦作用显著增加了AISI 316不锈钢的腐蚀倾向,其腐蚀率显著增加。纯磨损量占总腐蚀磨损量的76%~88%,材料的损失主要是由摩擦作用所引起,腐蚀磨损交互作用量占总腐蚀磨损量的12%~24%,腐蚀磨损交互作用是影响材料耐磨蚀性能的重要因素。  相似文献   

5.
316L不锈钢管道焊接工艺   总被引:3,自引:0,他引:3  
潘子祥 《焊接》2002,(12):36-37
我公司承担了攀钢煤化公司回收Ⅱ期脱酸蒸氨装置改造工程 ,该工程大部分是要求耐酸耐碱腐蚀的不锈钢管道 ,材质为 316L。工程质量的好坏 ,将直接影响到生产的安全运行。因此 ,制定合理有效的不锈钢焊接工艺是关键。1 焊接工艺( 1)焊接方法。由于现场多数为不锈钢管道 ,且大小不一 ,根据不锈钢的焊接特点 ,尽可能减小热输入量 ,故采用手工电弧焊、氩弧焊两种方法 ,d >15 9mm的采用氩弧焊打底 ,手工电弧焊盖面。d≤15 9mm的全用氩弧焊。焊机采用手工电弧焊 /氩弧焊两用的WS7-4 0 0逆变式弧焊机。( 2 )焊接材料。奥氏体不锈钢是…  相似文献   

6.
为提高316L不锈钢化学机械抛光(chemical-mechanical polishing,CMP)效率,针对络合剂类型对316L不锈钢加工效果的影响及影响机制进行研究。以材料去除率(material removal rate,MRR)和表面粗糙度(Ra)为指标,探究络合剂类型(甘氨酸、草酸和柠檬酸)及浓度对抛光效果的影响。利用电化学工作站、接触角测量仪和X射线光电子能谱仪(XPS)分析络合剂对316L不锈钢CMP加工影响机制。结果表明:当甘氨酸质量分数为0.2%时,能够同时获得较高的材料去除率和较低的Ra,分别为210 nm/min和1.613 nm。高浓度的络合剂对316L不锈钢材料去除率的抑制作用来源于络合剂增强了316L不锈钢表面耐蚀性,降低了表面氧化速度。XPS分析表明部分甘氨酸络合物会吸附于316L不锈钢表面产生缓蚀作用。   相似文献   

7.
《铸造技术》2016,(1):59-61
研究基于化工标准的316L不锈钢在腐蚀过程中表面Ni-P镀层的腐蚀行为有重要的科研意义。本文在316L不锈钢表面镀Ni-P层,并对其腐蚀过程进行了进一步研究。结果表明,316L不锈钢表面镀Ni-P层,并且采取适当的热处理工艺,可以显著地改善316L不锈钢在强酸环境和高温环境下的抗腐蚀能力。  相似文献   

8.
316L奥氏体不锈钢的腐蚀行为   总被引:2,自引:0,他引:2  
综述了316L奥氏体不锈钢应用过程中的腐蚀行为,包括晶间腐蚀、应力腐蚀开裂、缝隙腐蚀、环烷酸腐蚀、大气腐蚀和海水腐蚀。同时介绍了合金元素Mo、N和Al,以及电解质类型、温度、浓度等因素对其腐蚀行为的影响。最后讨论了应用中存在的问题,并对未来的发展做了一些展望。  相似文献   

9.
10.
316L不锈钢无铬钝化工艺研究   总被引:2,自引:0,他引:2  
丁宝峰  吴荫顺  汪轩义  张琳  曹备 《腐蚀与防护》2001,22(12):520-521,534
利用动电位扫描法和化学浸泡研究了316L不锈钢在两种无铬钝化工条件下所形成的钝化膜的耐点蚀性能,结果表明,钝化液组分Wb具有良好的钝化效果。  相似文献   

11.
316L不锈钢在NaCl溶液微动过程中局部腐蚀作用研究   总被引:8,自引:3,他引:5  
采用球-平面接触微动磨损设备,对轧制固溶316L不锈钢在0.9%NaCl溶液微动过程中局部腐蚀的作用进行了研究。结果表明微动是使不锈钢发生腐蚀的主导因素,开路状态下,316L不锈钢在微动过程中发生严重缝隙腐蚀,金属离子在微动区外发生氧化反应,生成碱性氢氧化物沉淀,加剧了微动区中心的贫氧特征,并改变了材料表面印化膜与基体间的应力状态,使材料表面氧化膜发生局部损伤,成为主导微动损伤扩展的主要因素之一,  相似文献   

12.
研究了304不锈钢在400℃、盐和水蒸气综合作用下的腐蚀行为及添加Al粉和Ti粉的有机硅涂层对不锈钢的防护作用.结果表明,304不锈钢裸样发生了较为严重的腐蚀.刷涂了有机硅涂层的304不锈钢在相同的条件下没有发生腐蚀,涂层对304不锈钢具有优异的防护作用.讨论了有机硅涂层的防护机理.  相似文献   

13.
动态应变时效对316L不锈钢疲劳蠕变行为的影响   总被引:1,自引:0,他引:1  
对热轧态和动态应变时效预变形态的316L奥氏体不锈钢进行了550℃下不同加载水平的疲劳蠕变实验.与热轧态相比,在应力控制的疲劳蠕变循环过程中,动态应变时效表现为位移的突然阶跃现象;动态应变时效预变形处理能有效地减小材料的循环应变幅度,提高材料的强度,推迟材料中出现位移阶跃现象的循环周次,延长材料的疲劳蠕变寿命.  相似文献   

14.
以一种含氮量达1.0%(质量分数)的高氮奥氏体不锈钢N10和316L不锈制为研究对象,通过在室温下对这两种材料施加不同的压缩变形量,研究了两种材料变形后的显微组织、真应力-真应变曲线和显微硬度.结果表明,两种材料在冷变形量小于20%时,机械孪晶和滑移共同参与变形.随变形量增加至50%,316L的变形方式过渡到以滑移为主,而高氮钢中机械孪晶和滑移仍共同参与变形.高氮奥氏体不锈钢在变形过程中不发生马氏体相变,表明其具有较高的结构稳定性;而316L中有马氏体形成.高氮不锈钢的固溶态强度、硬度和加工硬化系数均显著高于316L,冷变形可大幅提高两种材料的强度.两种材料的显微硬度均与晶粒取向有明显相关性,晶粒取向对显微硬度的影响大于变形不均匀性的影响.对高氮不锈钢表现出的优异性能的机制进行了分析和讨论.  相似文献   

15.
氢对不锈钢钝化膜破裂应力的影响   总被引:1,自引:1,他引:1  
用纳米力学探针测量了316不锈钢电解抛光以及抛光后阳极钝化试佯的载荷-压入位移曲线,并研究了氢的影响.结果表明,一旦表面存在氧化膜(电解抛光)或钝化膜(阳极钝化),在载荷-位移曲线上就会出现恒载荷平台;对氧化膜,平台载荷较小,对应膜的屈服;对钝化膜,平台载荷较大,对应膜的破裂.氢可降低钝化膜的平台载荷以及相同载荷下的压入位移,从而使得钝化膜的复合弹性模量Er和破裂应力σF都随试样中氢浓度Co的升高而下降,例如,Er(GPa)=100 82e^-0.01Co,σF(GPa)=1.59 2.93e^-0.010Co。  相似文献   

16.
针对介质条件的腐蚀机理,从理论角度选择316L不锈钢作为防腐材料,并加以试验、应用.  相似文献   

17.
探讨应力在316L不锈钢腐蚀疲劳过程中的作用。应力降低了不锈钢的点蚀电位,促进了腐蚀疲劳裂纹的萌生和扩展。初始疲劳裂纹在点蚀孔中的晶界上萌生,在应力的作用下,裂纹由沿晶变为穿晶扩展,并在断口上产生二次裂纹和疲劳辉纹。  相似文献   

18.
316不锈钢的非比例循环特性   总被引:3,自引:0,他引:3  
本文对316L,316LN不锈钢进行了单轴及双轴非比例循环加载试验研究,对这两种钢的循环硬化、塑性流动特性以及单轴随动硬化特性进行了分析,发现这些材料的循环特性不但依赖于等效应变幅值,更依赖于应变路径,得到了这两种材料的循环变形的一些有意义的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号