首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, rigid bodies and multibody systems are regarded as constrained mechanical systems at the outset. The constraints may be divided into two classes: (i) internal constraints which are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints related to the presence of joints in a multibody framework. Concerning external constraints lower kinematic pairs such as revolute and prismatic pairs are treated in detail. Both internal and external constraints are dealt with on an equal footing. The present approach thus circumvents the use of rotational variables throughout the whole time discretization. After the discretization has been completed a size‐reduction of the discrete system is performed by eliminating the constraint forces. In the wake of the size‐reduction potential conditioning problems are eliminated. The newly proposed methodology facilitates the design of energy–momentum methods for multibody dynamics. The numerical examples deal with a gyro top, cylindrical and planar pairs and a six‐body linkage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A global format is developed for momentum and energy consistent time integration of second‐order dynamic systems with general nonlinear stiffness. The algorithm is formulated by integrating the state‐space equations of motion over the time increment. The internal force is first represented in fourth‐order form consisting of the end‐point mean value plus a term containing the stiffness matrix increment. This form gives energy conservation for systems with internal energy as a quartic function of the displacement components. This representation is then extended to general energy conservation via a discrete gradient representation. The present procedure works directly with the internal force and the stiffness matrix at the time integration interval end‐points, and in contrast to previous energy‐conserving algorithms, it does not require any special form of the energy function nor use of mean value products at the element level or explicit use of a geometric stiffness matrix. An optional monotonic algorithmic damping, increasing with response frequency, is developed in terms of a single damping parameter. In the solution procedure, the velocity is eliminated and the nonlinear iterations are based on the displacement components alone. The procedure represents an energy consistent alternative to available collocation methods, with an equally simple implementation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Bifurcations of the periodic stationary solutions of nonlinear time‐periodic time‐delay dynamical systems are analyzed. The solution operator of the governing nonlinear delay‐differential equation is approximated by a sequence of nonlinear maps via semidiscretization. The subsequent nonlinear maps are combined to a single resultant nonlinear map that describes the evolution over the time period. Fold, flip, and Neimark‐Sacker bifurcations related to the fixed point of this map are analyzed via center manifold reduction and normal form theorems. The analysis unfolds the approximate stability properties and bifurcations of the stationary solution of the delay‐differential equation and, at the same time, allows the approximate computation of the arising period‐1, period‐2, and quasi‐periodic solution branches. The method is demonstrated for the delayed Mathieu‐Duffing equation, and the results are verified by numerical continuation.  相似文献   

5.
The article presents a pseudospectral approach to assess the stability robustness of linear time-periodic delay systems, where periodic functions potentially present discontinuities and the delays may also periodically vary in time. The considered systems are subject to linear real-valued time-periodic uncertainties affecting the coefficient matrices, and the presented method is able to fully exploit structure and potential interdependencies among the uncertainties. The assessment of robustness relies on the computation of the pseudospectral radius of the monodromy operator, namely, the largest Floquet multiplier that the system can attain within a given range of perturbations. Instrumental to the adopted novel approach, a solver for the computation of Floquet multipliers is introduced, which results into the solution of a generalized eigenvalue problem which is linear w.r.t. (samples of) the original system matrices. We provide numerical simulations for popular applications modeled by time-periodic delay systems, such as the inverted pendulum subject to an act-and-wait controller, a single-degree-of-freedom milling model and a turning operation with spindle speed variation.  相似文献   

6.
The paper aims at proposing a new strategy for real‐time identification or updating of structural mechanics models defined as dynamical systems. The main idea is to introduce the modified constitutive relation error concept, which is a practical tool that enables to efficiently solve identification problems with highly corrupted data, into the Kalman filtering, which is a classical framework for data assimilation. Furthermore, a PGD‐based model reduction method is performed in order to optimize capabilities of the online updating strategy. Performances of the proposed approach, in terms of robustness gain and computational cost reduction, are illustrated on several unsteady thermal applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We present the theory of novel time‐stepping algorithms for general nonlinear, non‐smooth, coupled, and thermomechanical problems. The proposed methods are thermodynamically consistent in the sense that their solutions rigorously comply with the two laws of thermodynamics: for isolated systems, they preserve the total energy and the entropy never decreases. Extending previous works on the subject, the newly proposed integrators are applicable to coupled mechanical systems with non‐smooth kinetics and can be formulated in arbitrary variables. The ideas are illustrated with a simple non‐smooth problem: a rheological model for a thermo‐elasto‐plastic material with hardening. Numerical simulations verify the qualitative features of the proposed methods and illustrate their excellent numerical stability, which stems precisely from their ability to preserve the structure of the evolution equations they discretize. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A standardized formal theory of development/evolution, characterization and design of a wide variety of computational algorithms emanating from a generalized time weighted residual philosophy for dynamic analysis is first presented with subsequent emphasis on detailed formulations of a particular class relevant to the so‐called time integration approaches which belong to a much broader classification relevant to time discretized operators. Of fundamental importance in the present exposition is the evolution of the theoretical design and the subsequent characterization encompassing a wide variety of time discretized operators, and the proposed developments are new and significantly different from the way traditional modal type and a wide variety of step‐by‐step time integration approaches with which we are mostly familiar have been developed and described in the research literature and in standard text books over the years. The theoretical ideas and basis towards the evolution of a generalized methodology and formulations emanate under the umbrella and framework and are explained via a generalized time weighted philosophy encompassing single‐field and two‐field forms of representations of the semi‐discretized dynamic equations of motion. Therein, the developments first leading to integral operators in time, and the resulting consequences then systematically leading to and explaining a wide variety of generalized time integration operators of which the family of single‐step time integration operators and various widely recognized and new algorithms are subsets, the associated multi‐step time integration operators and a class of finite element in time integration operators, and their relationships are particularly addressed. The generalized formulations not only encompass and explain a wide variety of time discretized operators and the recovery of various original methods of algorithmic development, but furthermore, naturally inherit features for providing new avenues which have not been explored an/or exploited to‐date and permit time discretized operators to be uniquely characterized by algorithmic markers. The resulting and so‐called discrete numerically assigned [DNA] markers not only serve as a prelude towards providing a standardized formal theory of development of time discretized operators and forum for selecting and identifying time discretized operators, but also permit lucid communication when referring to various time discretized operators. That which constitutes characterization of time discretized operators are the so‐called DNA algorithmic markers which essentially comprise of both (i) the weighted time fields introduced for enacting the time discretization process, and (ii) the corresponding conditions these weighted time fields impose (dictate) upon the approximations (if any) for the dependent field variables in the theoretical development of time integrators and the associated updates of the time discretized operators. Furthermore, a single analysis code which permits a variety of choices to the analyst is now feasible for performing structural dynamics computations on modern computing platforms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In the present paper a systematic development of higher order accurate time stepping schemes which exactly conserve total energy as well as momentum maps of underlying finite‐dimensional Hamiltonian systems with symmetry is shown. The result of this development is the enhanced Galerkin (eG) finite element method in time. The conservation of the eG method is generally related to its collocation property. Total energy conservation, in particular, is obtained by a new projection technique. The eG method is, moreover, based on objective time discretization of the used strain measure. This paper is concerned with particle dynamics and semi‐discrete non‐linear elastodynamics. The related numerical examples show good performance in presence of stiffness as well as for calculating large‐strain motions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Many‐body dynamics problems are expected to handle millions of unknowns when, for instance, investigating the three‐dimensional flow of granular material. Unfortunately, the size of the problems tractable by existing numerical solution techniques is severely limited on convergence grounds. This is typically the case when the equations of motion embed a differential variational inequality problem that captures contact and possibly frictional interactions between rigid and/or flexible bodies. As the size of the physical system increases, the speed and/or the quality of the numerical solution decreases. This paper describes three methods – the gradient projected minimum residual method, the preconditioned spectral projected gradient with fallback method, and the modified proportioning with reduced gradient projection method – that demonstrate better scalability than the projected Jacobi and Gauss–Seidel methods commonly used to solve contact problems that draw on a differential‐variational‐inequality‐based modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A Galerkin‐based discretization method for index 3 differential algebraic equations pertaining to finite‐dimensional mechanical systems with holonomic constraints is proposed. In particular, the mixed Galerkin (mG) method is introduced which leads in a natural way to time stepping schemes that inherit major conservation properties of the underlying constrained Hamiltonian system, namely total energy and angular momentum. In addition to that, the constraints on the configuration level and on the velocity/momentum level are fulfilled exactly. The application of the mG method to specific mechanical systems such as the pendulum, rigid body dynamics and the coupled motion of rigid and flexible bodies is presented. Related numerical examples are investigated to evaluate the numerical performance of the mG(1) and mG(2) method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
We propose a definition of interior symmetry in the context of general dynamical systems. This concept appeared originally in the theory of coupled cell networks, as a generalization of the idea of symmetry of a network. The notion of interior symmetry introduced here can be seen as a special form of forced symmetry breaking of an equivariant system of differential equations. Indeed, we show that a dynamical system with interior symmetry can be written as the sum of an equivariant system and a ‘perturbation term’ which completely breaks the symmetry. Nonetheless, the resulting dynamical system still retains an important feature common to systems with symmetry, namely, the existence of flow-invariant subspaces. We define interior symmetry breaking bifurcations in analogy with the definition of symmetry breaking bifurcation from equivariant bifurcation theory and study the codimension one steady-state and Hopf bifurcations. Our main result is the full analogues of the well-known Equivariant Branching Lemma and the Equivariant Hopf Theorem from the bifurcation theory of equivariant dynamical systems in the context of interior symmetry breaking bifurcations.  相似文献   

13.
We propose a method to couple smoothed particle hydrodynamics and finite elements methods for nonlinear transient fluid–structure interaction simulations by adopting different time‐steps depending on the fluid or solid sub‐domains. These developments were motivated by the need to simulate highly non‐linear and sudden phenomena requiring the use of explicit time integrators on both sub‐domains (explicit Newmark for the solid and Runge–Kutta 2 for the fluid). However, due to critical time‐step required for the stability of the explicit time integrators in, it becomes important to be able to integrate each sub‐domain with a different time‐step while respecting the features that a previously developed mono time‐step coupling algorithm offered. For this matter, a dual‐Schur decomposition method originally proposed for structural dynamics was considered, allowing to couple time integrators of the Newmark family with different time‐steps with the use of Lagrange multipliers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In the present work the mortar method is applied to planar large deformation contact problems without friction. In particular, the proposed form of the mortar contact constraints is invariant under translations and rotations. These invariance properties lay the foundation for the design of energy‐momentum time‐stepping schemes for contact–impact problems. The iterative solution procedure is embedded into an active set algorithm. Lagrange multipliers are used to enforce the mortar contact constraints. The solution of generalized saddle point systems is circumvented by applying the discrete null space method. Numerical examples demonstrate the robustness and enhanced numerical stability of the newly developed energy‐momentum scheme. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, we present an extension of the formulation recently developed by the authors to the structural dynamics setting. Inspired by a structure-preserving family of variational integrators, our new formulation relies on a discrete balance equation that establishes the dynamic equilibrium. From this point of departure, we first derive an “exact” discrete-continuous nonlinear optimization problem that works directly with data sets. We then develop this formulation further into an “approximate” nonlinear optimization problem that relies on a general constitutive model. This underlying model can be identified from a data set in an offline phase. To showcase the advantages of our framework, we specialize our methodology to the case of a geometrically exact beam formulation that makes use of all elements of our approach. We investigate three numerical examples of increasing difficulty that demonstrate the excellent computational behavior of the proposed framework and motivate future research in this direction.  相似文献   

16.
In this paper, we investigate the error estimates for the solutions of parabolic optimal control problem by mixed finite element methods. The state and co‐state are approximated by the lowest‐order Raviart–Thomas mixed finite element spaces, and the control is approximated by piecewise constant functions. The convergence for the states, co‐states and the control is demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.  相似文献   

18.
Nonlinear geometrically exact rod dynamics is of great interest in many areas of engineering. In recent years, the research was focused towards Timoshenko‐type rod theories where shearing is of importance. However, in many general model of mechanisms and spatial deformations, it is desirable to have a displacement‐only formulation, which brings us back to the classical Bernoulli beam. While it is well known for linear analysis, the Bernoulli beam is not as common in geometrically exact models of dynamics, especially when we want to incorporate the rotational inertia into the model. This paper is about the development of an energy‐momentum integration scheme for the geometrically exact Bernoulli‐type rod. We will show that the task is achievable and devise a general framework to do so. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Numerical analysis of linear visco‐elastic materials requires robust and stable methods to integrate partial differential equations in both space and time. In this paper, symmetric space–time finite element operators are derived for the first time for elementary linear elastic spring and linear viscous dashpot. These can thereafter be assembled in parallel and in series to simulate an arbitrarily complex linear visco‐elastic behaviour. The flexibility of the proposed method allows the formulation of the behaviour, which closely reflects physical processes. An efficient algorithm is proposed to use the generated elementary matrices in a way that is comparable with finite difference schemes, in terms of both processor and memory costs. This unconditionally stable and convergent procedure is equally valid for space domains in which geometry or material properties evolve with time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, an explicit family of time marching procedures with adaptive dissipation control is introduced. The proposed technique is conditionally stable, second‐order accurate, and has controllable algorithm dissipation, which adapts according to the properties of the governing system of equations. Thus, spurious modes can be more effectively dissipated and accuracy is improved. Because this is an explicit time integration technique, the new family is quite efficient, requiring no system of equations to be dealt with at each time step. Moreover, the technique is simple and very easy to implement. Numerical results are presented along the paper, illustrating the good performance of the proposed method, as well as its potentialities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号