首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
谷伟  许文涛 《经济数学》2012,29(4):20-25
期权定价问题可以转化为对倒向随机微分方程的求解,进而转化为对相应抛物型偏微分方程的求解.为了求解与倒向随机微分方程相应的二阶拟线性抛物型微分方程初值问题,引入一类新的随机算法-分层方法取代传统的确定性数值算法.这种数值方法理论上是通过弱显式欧拉法,离散其相应随机系统解的概率表示而得到.该随机算法的收敛性在文中得到证明,其稳定性是自然的.并构造了易于数值实现的基于插值的算法,实证研究说明这种算法能很好地提供期权定价模型的数值模拟.  相似文献   

2.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. It is surprising that there are not any numerical methods established for neutral stochastic delay differential equations yet. In the paper, the Euler–Maruyama method for neutral stochastic delay differential equations is developed. The key aim is to show that the numerical solutions will converge to the true solutions under the local Lipschitz condition.  相似文献   

3.
This work is concerned with numerical schemes for stochastic optimal control problems (SOCPs) by means of forward backward stochastic differential equations (FBSDEs). We first convert the stochastic optimal control problem into an equivalent stochastic optimality system of FBSDEs. Then we design an efficient second order FBSDE solver and an quasi-Newton type optimization solver for the resulting system. It is noticed that our approach admits the second order rate of convergence even when the state equation is approximated by the Euler scheme. Several numerical examples are presented to illustrate the effectiveness and the accuracy of the proposed numerical schemes.  相似文献   

4.
非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性   总被引:2,自引:0,他引:2  
王文强  黄山  李寿佛 《计算数学》2007,29(2):217-224
本文首先将数值方法的均方稳定性的概念MS-稳定与GMS-稳定从线性试验方程推广到一般非线性的情形,然后针对一维情形下的非线性随机延迟微分方程初值问题,证明了如果问题本身满足零解是均方渐近稳定的充分条件,那么当漂移项满足一定的限制条件时,Euler- Maruyama方法是MS-稳定的与带线性插值的Euler-Maruyama方法是GMS-稳定的理论结果.  相似文献   

5.
本文讨论一般非线性随机延迟微分方程Heun方法的数值稳定性,证明了如果问题本身满足零解是均方指数稳定和均方渐近稳定的充分条件,则当方程的漂移项进一步满足一定的条件时,Heun方法是Ms.稳定的,带线性插值的Heun方法是均方指数稳定的和GMS-稳定的理论结果.文末的数值试验进一步验证了所得的相关结论.  相似文献   

6.
赵卫东 《计算数学》2015,37(4):337-373
1990年,Pardoux和Peng(彭实戈)解决了非线性倒向随机微分方程(backward stochastic differential equation,BSDE)解的存在唯一性问题,从而建立了正倒向随机微分方程组(forward backward stochastic differential equations,FBSDEs)的理论基础;之后,正倒向随机微分方程组得到了广泛研究,并被应用于众多研究领域中,如随机最优控制、偏微分方程、金融数学、风险度量、非线性期望等.近年来,正倒向随机微分方程组的数值求解研究获得了越来越多的关注,本文旨在基于正倒向随机微分方程组的特性,介绍正倒向随机微分方程组的主要数值求解方法.我们将重点介绍讨论求解FBSDEs的积分离散法和微分近似法,包括一步法和多步法,以及相应的数值分析和理论分析结果.微分近似法能构造出求解全耦合FBSDEs的高效高精度并行数值方法,并且该方法采用最简单的Euler方法求解正向随机微分方程,极大地简化了问题求解的复杂度.文章最后,我们尝试提出关于FBSDEs数值求解研究面临的一些亟待解决和具有挑战性的问题.  相似文献   

7.
In this paper, we first propose the so‐called improved split‐step theta methods for non‐autonomous stochastic differential equations driven by non‐commutative noise. Then, we prove that the improved split‐step theta method is convergent with strong order of one for stochastic differential equations with the drift coefficient satisfying a superlinearly growing condition and a one‐sided Lipschitz continuous condition. Finally, the obtained results are verified by numerical experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
We present the ability of numerical simulations to reproduce the mean-square exponential dichotomy of stochastic differential equations. Under some conditions, we show that the mean-square exponential dichotomy of stochastic differential equations is equivalent to that of the numerical method for sufficient small step sizes  相似文献   

9.
In this paper we construct implicit stochastic Runge–Kutta (SRK) methods for solving stochastic differential equations of Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used. We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results are reported for confirming convergence properties and for comparing the numerical behaviour of these methods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.  相似文献   

11.
Recently, in the numerical analysis for stochastic differential equations (SDEs), it is a new topic to study the numerical schemes of neutral stochastic functional differential equations (NSFDEs) (see Wu and Mao [1]). Especially when Markovian switchings are taken into consideration, these problems will be more complicated. Although Zhou and Wu [2] develop a numerical scheme to neutral stochastic delay differential equations with Markovian switching (short for NSDDEwMSs), their method belongs to explicit Euler–Maruyama methods which are in general much less accurate in approximation than their implicit or semi-implicit counterparts. Therefore, to propose an implicit method becomes imperative to fill the gap. In this paper we will extend Zhou and Wu [2] to the case of the semi-implicit Euler–Maruyama methods and equations with phase semi-Markovian switching rather than Markovian switching. The employment of phase semi-Markovian chains can avoid the restriction of the negative exponential distribution of the sojourn time at a state. We prove the semi-implicit Euler solution will converge to the exact solution to NSDDEwMS under local Lipschitz condition. More precise inequalities and new techniques are put forward to overcome the difficulties for the existence of the neutral part.  相似文献   

12.
Recently the Balanced method was introduced as a class of quasi-implicit methods for solving stiff stochastic differential equations. We examine asymptotic and mean-square stability for several implementations of the Balanced method and give a generalized result for the mean-square stability region of any Balanced method. We also investigate the optimal implementation of the Balanced method with respect to strong convergence. AMS subject classification (2000) 65C30, 65L07  相似文献   

13.
1.IntroductionFOrthestrongdiscretizationofSDEs,anynumericalmethodwhichonlydependsonthevaluesofBrownianpathsorPoissonpathsatthepartitionnodescannotachieveanorderhigherthan0.5ingeneral[')'1'].Thereforetheevaluationofmultiplestochasticintegralsontheintervalsbetweennodesisamajorobstaclethatmustbeovercome.Someattemptshavebeenmadepreviouslyindifferentapproachestoapproximatemul-tiplestochasticintegrals.[2]suggestsanapproximationintermsofFourierGaussiancoefficientsoftheBrownianbridgeprocess.Asthel…  相似文献   

14.
15.
Abstract

In this article the numerical approximation of solutions of Itô stochastic delay differential equations is considered. We construct stochastic linear multi-step Maruyama methods and develop the fundamental numerical analysis concerning their 𝕃 p -consistency, numerical 𝕃 p -stability and 𝕃 p -convergence. For the special case of two-step Maruyama schemes we derive conditions guaranteeing their mean-square consistency.  相似文献   

16.
In this paper, stochastic differential equations in the Stratonovich sense with a conserved quantity are considered. A stochastic partitioned averaged vector field method is proposed and analyzed. We prove this numerical method is able to preserve the conserved quantity of the original system. Then the convergence analysis is carried out in detail and we derive the method is convergent with order $1$ in the mean-square sense. Finally some numerical examples are reported to verify the effectiveness and flexibility of the proposed method.  相似文献   

17.
ABSTRACT

The stochastic theta method is a family of implicit Euler methods for approximating solutions to Itô stochastic differential equations. It is proved that the weak error for the stochastic theta numerical method is of the correct form to apply Richardson extrapolation. Several computational examples illustrate the improvement in accuracy of the approximations when applying extrapolation.  相似文献   

18.
This paper intends to develop a new method to obtain the threshold of an impulsive stochastic chemostat model with saturated growth rate in a polluted environment. By using the theory of impulsive differential equations and stochastic differential equations, we obtain conditions for the extinction and the permanence of the microorganisms of the deterministic chemostat model and the stochastic chemostat model. We develop a new numerical computation method for impulsive stochastic differential system to simulate and illustrate our theoretical conclusions. The biological results show that a small stochastic disturbance can cause the microorganism to die out, that is, a permanent deterministic system can go to extinction under the white noise stochastic disturbance. The theoretical method can also be used to explore the threshold of some impulsive stochastic differential equations.  相似文献   

19.
研究了多步法用于求解线性随机微分方程的稳定性,利用维纳过程的增量服从正态分布的性质,得到了在乘性噪声情况下,多步法用于线性随机微分方程的均方稳定性的条件,并用MATLAB对实际算例进行了数值模拟.  相似文献   

20.
In this paper, we present the backward stochastic Taylor expansions for a Ito process, including backward Ito-Taylor expansions and backward Stratonovich-Taylor expansions. We construct the general full implicit strong Taylor approximations (including Ito-Taylor and Stratonovich-Taylor schemes) with implicitness in both the deterministic and the stochastic terms for the stiff stochastic differential equations (SSDE) by employing truncations of backward stochastic Taylor expansions. We demonstrate that these schemes will converge strongly with corresponding order $1,2,3,\ldots$ Mean-square stability has been investigated for full implicit strong Stratonovich-Taylor scheme with order $2$, and it has larger mean-square stability region than the explicit and the semi-implicit strong Stratonovich-Taylor schemes with order $2$. We can improve the stability of simulations considerably without too much additional computational effort by using our full implicit schemes. The full implicit strong Taylor schemes allow a larger range of time step sizes than other schemes and are suitable for SSDE with stiffness on both the drift and the diffusion terms. Our numerical experiment shows these points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号