首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleolin is a major nucleolar phosphoprotein of exponentially growing eukaryotic cells. Here we report the cloning, purification, and characterization of the C-terminal glycine/arginine-rich (GAR) domain of pea nucleolin. The purified recombinant protein (17 kDa) shows ATP-/Mg(2+)-dependent DNA helicase and ssDNA-/Mg(2+)-dependent ATPase activities. The enzyme unwinds DNA in the 5'- to 3'-direction, which is the first report in plant for this directional activity. It unwinds forked/non-forked DNA with equal efficiency. The anti-nucleolin antibodies immunodepleted the activities of the enzyme. The DNA interacting ligands nogalamycin, daunorubicin, actinomycin C1, and ethidium bromide were inhibitory to DNA unwinding (with K(i) values of 0.40, 2.21, 8.0, and 9.0 microM, respectively) and ATPase (with K(i) values of 0.43, 1.65, 4.6, and 7.0 microM, respectively) activities of the enzyme. This study confirms that the unwinding and ATPase activities of pea nucleolin resided in the GAR domain. This study should make important contribution to our better understanding of DNA transaction in plants, mechanism of DNA unwinding, and the mechanism by which these ligands can disturb genome integrity.  相似文献   

2.
Cytoplasmic dynein, a large minus-end-directed microtubule motor, performs multiple functions during the cell cycle. In interphase, dynein moves membrane organelles, while in mitosis it moves chromosomes and helps to form the mitotic spindle. The cell-cycle regulation of dynein activity may be controlled, at least in part, by the phosphorylation of its light intermediate chains (DLIC), since a 10-fold increase in light intermediate chain phosphorylation correlates with a decrease in dynein-based membrane transport of similar magnitude in mitosis. In this study, we sought to identify the kinase responsible for this potentially important phosphorylation event. We show that bacterially-expressed chicken light intermediate chain (chDLIC) will undergo mitosis-specific phosphorylation when added to Xenopus egg extracts. Mutation of a conserved cdc2 kinase consensus site (Ser197) abolishes this phosphorylation event, and mass spectroscopy analysis confirms that the wild-type DLIC is stoichiometrically phosphorylated at this site when incubated with metaphase but not interphase extracts. We also show that purified cdc2 kinase phosphorylates purified DLICs at Ser197 in vitro and that Ser197 phosphorylation is dramatically reduced in metaphase extracts depleted of cdc2 kinase. These results indicate that cdc2 kinase directly phosphorylates dynein and thus may be an important regulator of dynein activity in the cell cycle.  相似文献   

3.
4.
5.
TWINKLE is a nucleus-encoded human mitochondrial (mt)DNA helicase. Point mutations in TWINKLE are associated with heritable neuromuscular diseases characterized by deletions in the mtDNA. To understand the biochemical basis of these diseases, it is important to define the roles of TWINKLE in mtDNA metabolism by studying its enzymatic activities. To this end, we purified native TWINKLE from Escherichia coli. The recombinant TWINKLE assembles into hexamers and higher oligomers, and addition of MgUTP stabilizes hexamers over higher oligomers. Probing into the DNA unwinding activity, we discovered that the efficiency of unwinding is greatly enhanced in the presence of a heterologous single strand-binding protein or a single-stranded (ss) DNA that is complementary to the unwound strand. We show that TWINKLE, although a helicase, has an antagonistic activity of annealing two complementary ssDNAs that interferes with unwinding in the absence of gp2.5 or ssDNA trap. Furthermore, only ssDNA and not double-stranded (ds)DNA competitively inhibits the annealing activity, although both DNAs bind with high affinities. This implies that dsDNA binds to a site that is distinct from the ssDNA-binding site that promotes annealing. Fluorescence anisotropy competition binding experiments suggest that TWINKLE has more than one ssDNA-binding sites, and we speculate that a surface-exposed ssDNA-specific site is involved in catalyzing DNA annealing. We propose that the strand annealing activity of TWINKLE may play a role in recombination-mediated replication initiation found in the mitochondria of mammalian brain and heart or in replication fork regression during repair of damaged DNA replication forks.  相似文献   

6.
Pea DNA helicase 45 (PDH45) is an ATP-dependent DNA unwinding enzyme, with intrinsic DNA-dependent ATPase activity [Plant J. 24 (2000) 219]. We have determined the effect of various DNA-binding agents, such as daunorubicin, ethidium bromide, ellipticine, cisplatin, nogalamycin, actinomycin C1, and camptothecin on the DNA unwinding and ATPase activities of the plant nuclear DNA helicase PDH45. The results show that all the agents except actinomycin C1, and camptothecin inhibited the helicase (apparent K(i) values ranging from 1.5 to 7.0 microM) and ATPase (apparent K(i) values ranging from 2.5 to 11.9 microM) activities. This is the first study to show the effect of various DNA-binding agents on the plant nuclear helicase and also first to demonstrate inhibition of any helicase by cisplatin. Another striking finding that the actinomycin C1 and ellipticine act differentially on PDH45 as compared to pea chloroplast helicase suggests that the mechanism of DNA unwinding could be different in nucleus and chloroplast. These results suggest that the intercalation of the inhibitors into duplex DNA generates a complex that impedes translocation of PDH45, resulting in both the inhibitions of unwinding activity and ATP hydrolysis. This study would be useful to obtain a better understanding of the mechanism of plant nuclear DNA helicase unwinding and the mechanism by which these agents can disturb genome integrity.  相似文献   

7.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Our previous studies have shown that the overexpression of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, increases the enzymatic activity of the polyamine-responsive enzyme casein kinase 2 (CK2). Because CK2 is known to preferentially associate with the nuclear matrix in response to other trophic stimuli, we investigated the effects of ODC overexpression on CK2 localisation and on the CK2-mediated phosphorylation of a known CK2 substrate, the nucleolar phosphoprotein B23. Immunofluorescence analysis of CK2 and B23 in primary keratinocytes revealed that ODC overexpression resulted in the colocalisation of CK2 with B23 at the nucleolar borders. ODC overexpression also increased CK2 kinase activity 2-fold at the nuclear matrix, a response which could be abrogated by treatment of K6/ODC transgenic keratinocytes with the ODC inhibitor α-difluoromethylornithine (DFMO). Levels of B23 protein were also elevated in ODC-overexpressing cells compared to normal cells or transgenic cells treated with DFMO. This increase in protein level was neither due to an increase in steady-state mRNA levels, nor was it due to increased stability of B23 protein. Phosphorylation of B23 was also increased in ODC-overexpressing cells, and this increased phosphorylation could be blocked by treatment of the cells with the CK2 kinase inhibitors apigenin or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). These data suggest that B23 may be a downstream effector of polyamines via phosphorylation by the protein kinase CK2.  相似文献   

9.
The exosome is a conserved protein complex that is responsible for essential 3'→5' RNA degradation in both the nucleus and the cytosol. It is composed of a nine-subunit core complex to which co-factors confer both RNA substrate recognition and ribonucleolytic activities. Very few exosome co-factors have been identified in plants. Here, we have characterized a putative RNA helicase, AtMTR4, that is involved in the degradation of several nucleolar exosome substrates in Arabidopsis thaliana. We show that AtMTR4, rather than its closely related protein HEN2, is required for proper rRNA biogenesis in Arabidopsis. AtMTR4 is mostly localized in the nucleolus, a subcellular compartmentalization that is shared with another exosome co-factor, RRP6L2. AtMTR4 and RRP6L2 cooperate in several steps of rRNA maturation and surveillance, such as processing the 5.8S rRNA and removal of rRNA maturation by-products. Interestingly, degradation of the Arabidopsis 5' external transcribed spacer (5' ETS) requires cooperation of both the 5'→3' and 3'→5' exoribonucleolytic pathways. Accumulating AtMTR4 targets give rise to illegitimate small RNAs; however, these do not affect rRNA metabolism or contribute to the phenotype of mtr4 mutants. Plants lacking AtMTR4 are viable but show several developmental defects, including aberrant vein patterning and pointed first leaves. The mtr4 phenotype resembles that of several ribosomal protein and nucleolin mutants, and may be explained by delayed ribosome biogenesis, as we observed a reduced rate of rRNA accumulation in mtr4 mutants. Taken together, these data link AtMTR4 with rRNA biogenesis and development in Arabidopsis.  相似文献   

10.
Thymidylate synthase (TS) is a well-validated cancer target that undergoes conformational switching between active and inactive states. Two mutant human TS (hTS) proteins are predicted from crystal structures to be stabilized in an inactive conformation to differing extents, with M190K populating the inactive conformation to a greater extent than A191K. Studies of intrinsic fluorescence and circular dichroism revealed that the structures of the mutants differ from those of hTS. Inclusion of the substrate dUMP was without effect on M190K but induced structural changes in A191K that are unique, relative to hTS. The effect of strong stabilization in an inactive conformation on protein phosphorylation by casein kinase 2 (CK2) was investigated. M190K was highly phosphorylated by CK2 relative to an active-stabilized mutant, R163K hTS. dUMP had no detectable effect on phosphorylation of M190K; however, dUMP inhibited phosphorylation of hTS and R163K. Studies of temperature dependence of catalysis revealed that the E(act) and temperature optimum are higher for A191K than hTS. The potency of the active-site inhibitor, raltitrexed, was lower for A191K than hTS. The response of A191K to the allosteric inhibitor, propylene diphosphonate (PDPA) was concentration dependent. Mixed inhibition was observed at low concentrations; at higher concentrations, A191K exhibited nonhyperbolic behavior with respect to dUMP and inhibition of catalysis was reversed by substrate saturation. In summary, inactive-stabilized mutants differ from hTS in thermal stability and response to substrates and PDPA. Importantly, phosphorylation of hTS by CK2 is selective for the inactive conformation, providing the first indication of physiological relevance for conformational switching.  相似文献   

11.
12.
The Ku autoantigen is a heterodimeric protein of 70- and 83-kDa subunits, endowed with duplex DNA end-binding capacity and DNA helicase activity (Human DNA Helicase II, HDH II). HDH II/Ku is well established as the DNA binding component, the regulatory subunit as well as a substrate for the DNA-dependent protein kinase DNA-PK, a complex involved in the repair of DNA double-strand breaks and in V(D)J recombination in eukaryotes. The effects of phosphorylation by this kinase on the helicase activity of Escherichia coli-produced HDH II/Ku were studied. The rate of DNA unwinding by recombinant HDH II/Ku heterodimer is stimulated at least fivefold upon phosphorylation by DNA-PKcs. This stimulation is due to the effective transfer of phosphate residues to the helicase rather than the mere presence of the complex. In vitro dephosphorylation of HeLa cellular HDH II/Ku caused a significant decrease in the DNA helicase activity of this enzyme.  相似文献   

13.
We previously reported that a complex of nuclear proteins from HeLa cells, among them histone H1 and casein kinase 2 co-eluted from immobilized nucleosome assembly protein 2 (NAP-2)-Sepharose. Here, using HeLa cell nuclear extracts, we found NAP-2 migrates in a blue-native polyacrylamide gel with an apparent molecular weight of 300 kDa. HeLa cell NAP-2, labeled in vivo with radioactive orthophosphate, co-precipitated with at least two phosphoproteins, with an apparent mass of 100 and 175 kDa, respectively, as determined by SDS-PAGE. NAP-2 from total HeLa cell extract co-purified with other proteins through two sequential chromatographic steps: first, a positively charged resin, Q-Sepharose, was used, which purified NAP-2 more easily with other proteins that eluted as a single peak at 0.5 M NaCl. This fraction possessed both relaxing and supercoiling activities, and it was able to assemble regularly spaced nucleosomes onto naked DNA in an ATP-dependent manner. Second, a negatively charged resin (heparin) was used, which retained small amounts of NAP-2 (a very acidic polypeptide) and topoisomerase I. This fraction, although able to supercoil relaxed DNA, did so to a lesser extent than the Q-Sepharose fraction. The data suggest that NAP-2 is in complex(es) with other proteins, which are distinct from histones.  相似文献   

14.
Human DNA helicase VIII (HDH VIII) was isolated in the course of a systematic study of the DNA unwinding enzymes present in human cells. From a HeLa cell nuclear extract a protein with an Mrof 68 kDa in SDS-PAGE was isolated, characterised and micro-sequenced. The enzyme shows ATP- and Mg2+-dependent activity is not stimulated by RPA, prefers partially unwound 3'-tailed substrates and moves along the bound strand in the 5' to 3' direction. HDH VIII can also unwind partial RNA/DNA and RNA/RNA duplexes. Microsequencing of the polypeptide showed that this enzyme corresponds to G3BP, an element of the Ras pathway which binds specifically to the GTPase-activating protein. HDH VIII/G3BP is analogous to the heterogeneous nuclear ribonucleoproteins and contains a sequence rich in RGG boxes similar to the C-terminal domain of HDH IV/nucleolin, another DNA and RNA helicase.  相似文献   

15.
Many cellular responses to the occupancy of membrane receptors include the hydrolysis of phosphatidylinositol-4,5 bisphosphate (PIP2) by phospholipase C (PLC) and the subsequent generation of inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). In the gamete interaction system, sperm respond to binding to the egg's extracellular matrix, the zona pellucida (zp), by exocytosis of the acrosome in a process known as the acrosome reaction (AR). Under physiological conditions, zp binding stimulates ARs only after sperm have undergone a final maturation phase, known as capacitation. One of the zp glycoproteins, ZP3, serves as the ligand for sperm plasma membrane receptors and as the trigger for this regulated exocytosis. Both phosphoinositide-linked and tyrosine kinase-mediated pathways participate in the signalling cascade triggered by sperm-zp interaction. This paper reports that stimulation with solubilized zp increased PIP2-PLC enzymatic activity from mouse sperm. ZP3 is the zp component responsible for this stimulation. The effect was abolished by tyrphostin, suggesting that zp activation of PLC was mediated by tyrosine phosphorylation and that γ was the PLC isoform involved. We show the presence and distribution of PLCγ1 in mouse sperm. Immunostaining studies indicate that PLCγ1 is restricted to the sperm head. Sperm capacitation induced translocation of PLCγ1 from the soluble to the particulate fraction. These data suggest that PLCγ1 constitutes a component in the cascade that couples sperm binding to the egg's extracellular matrix with acrosomal exocytosis, a regulated secretory response upon which fertilization depends absolutely. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
18.
19.
20.
Kawaguchi A  Nagata K 《The EMBO journal》2007,26(21):4566-4575
By dissecting and reconstituting a cell-free influenza virus genome replication system, we have purified and identified the minichromosome maintenance (MCM) complex, which is thought to be a DNA replicative helicase, as one of the host factors that regulate the virus genome replication. MCM interacted with the PA subunit of the viral RNA-dependent RNA polymerase that is found to be involved in the replication genetically. The virus genome replication was decreased in MCM2 knockdown cells. The viral polymerase appeared to be a nonproductive complex, that is, it was capable of initiating replication but produced only abortive short RNA chains. MCM stimulated de novo-initiated replication reaction by stabilizing a replication complex during its transition from initiation to elongation. Based on the findings, including the result that the MCM-mediated RNA replication reaction was competed with exogenously added RNA, we propose that MCM functions as a scaffold between the nascent RNA chains and the viral polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号