首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-power, ultralow-chirp electroabsorption modulator (EAM) integrated with a distributed-feedback laser diode (EML) having ultrashort lifetime of photogenerated holes in the EAM quantum-well (QW) structure is reported for the first time. A shallow QW structure having a small valence band offset to enhance the sweepout of photogenerated holes was employed as EAM absorption layer. The measured hole lifetimes were 7-11 ps, and the measured frequency chirp (/spl alpha/-parameter) was low or negative at low EAM reverse bias voltages even under high optical output power conditions. Successful 10-Gb/s 80-km normal-dispersion single-mode fiber transmission (chromatic dispersion D=1600 ps/nm) and the record average fiber optical output power (P/sub f/) of +5.3 dBm were achieved at 25/spl deg/C. In addition, semicooled operation of EML at enhanced bit rates has been demonstrated for application in small-form-factor protocol-agnostic optical transceivers. A 10.7-Gb/s 1600-ps/nm transmission was achieved at 45/spl deg/C and P/sub f/=+3.0 dBm.  相似文献   

2.
We have demonstrated the transmission performance of 10-Gb/s transmitters based on LiNbO/sub 3/ modulator using semiconductor optical amplifiers (SOAs) as booster amplifiers. Utilizing the negative chirp converted in SOAs and self-phase modulation induced by high optical power, we can successfully transmit 10-Gb/s optical signals over 80 km through the standard single-mode fiber with the transmitter using SOAs as booster amplifiers. SOAs can be used for booster amplifiers with a careful adjustment of the operating conditions. In order to further understand an SOA's characteristics as a booster amplifier, we model SOAs and other subsystems to verify the experimental results. Based on the good agreement between the experimental and simulation results, we can find the appropriate parameters of input signals for SOAs, such as extinction ratio, rising/falling time, and chirp parameter to maximize output dynamic range and available maximum output power (P/sub o,max/).  相似文献   

3.
A compact 10-Gb/s optical transmitter module with small-chirp output was developed by using a monolithically integrated electroabsorption modulator with a distributed-feedback laser. This module can be operated at a bit rate of more than 10 Gb/s at 1.55 μm, and shows a high modulated output power of ~1 dBm with a low optical coupling loss of 3.2 dB between chip and fiber. A multifunctional and compact optical isolator with a monitor photodiode was also developed to decrease noise  相似文献   

4.
We present a complete large-signal dynamic model of electroabsorption modulator integrated (EAMI) distributed feedback (DFB) lasers using the time-dependent transfer matrix method. With this model, it is possible to analyze dynamic characteristics depending on optical feedback and spatial hole burning. Also, we can separately calculate the laser and modulator chirp including the voltage-dependent modulator chirp parameter, the grating phase at the end of the laser section, the length of the waveguide region, and electrical coupling. Therefore, our model can provide better predictions regarding the laser and modulator chirp. The calculated large-signal chirp using our model has similar characteristics to the measured large-signal chirp for 10-Gb/s EAMI-DFB lasers  相似文献   

5.
A dense wavelength-division-multiplexing (WDM) transmission system with very-high-speed channels was investigated experimentally. A 10-Gb/s four-channel WDM optical transmission (total capacity of 40 Gb/s) over a 40-km dispersion-shifted fiber was achieved by using hybrid-integrated DFB-LD/driver modules for transmitters and two cascaded semiconductor optical amplifier (SOA) modules for receivers. The experiment confirmed that the SOA is applicable for WDM transmission systems with high bit rates because of its inherent wide bandwidth. The transmission capacity of 40 Gb/s, achieved using an intensity modulation/direct detection (IM/DD) scheme, is the highest ever reported. This technology will make possible ultralarge capacity (up to several-hundred gigabits per second) and long-haul transmission systems in the future  相似文献   

6.
We investigate the yield of 10-Gb/s electroabsorption modulator integrated-distributed feedback (EAMI-DFB) lasers for 40- and 60-km transmissions due to the chirp. The yield has been estimated from the effective positive chirp (EPC) capable to transmit signals over 40 and 60 km within 2-dB dispersion power penalty. The signals with EPC of 0.48 and 0.24 Å can be transmitted over 40 and 60 km with less than 2-dB power penalty, respectively. The chirp is calculated from a large signal dynamic model of EAMI-DFB lasers using the time-dependent transfer matrix method (TMM). The results suggest that the yield is mostly dependent on coupling constant (κL) and should be set around 1.3 for high yield while maintaining low facet reflectivity at modulator  相似文献   

7.
NRZ operation at 40 Gb/s has been successfully performed using a very compact module of a multiple-quantum-well (MQW) electroabsorption modulator integrated with a distributed-feedback (DFB) laser. While the DFB laser is injected with a constant current, the integrated MQW electroabsorption modulator is driven with a 10-Gb/s electrical NRZ signal. A clearly opened eye diagram has been observed in the modulated light from the modulator. And a receiver sensitivity of -27.2 dBm at 10/sup -9/ has been experimentally confirmed in the bit-error-rate (BER) performance.  相似文献   

8.
We investigate large-signal dynamic characteristics of tunable distributed Bragg reflector (DBR) lasers with different structures. Because of high chirp and complex structures of tunable DBR lasers, it is difficult to accurately analyze large signal chirp and output pulse shapes with analytical models. Therefore, we apply a numerical model based on the time-dependent transfer matrix method to tunable DBR lasers integrated with electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA). Using this model, we find a suitable /spl alpha/-parameter range in the Bragg grating section (/spl alpha//sub Bragg/-parameter) that produces the tolerable wavelength chirp while maintaining a proper tuning range. To employ the tunable lasers in wavelength division multiplexed networks and improve flexibility of the networks, the tunable lasers should have high output power and low wavelength chirp. According to our simulation results, the EAM section had better be located in between SOA and DBR laser sections to obtain high output power and low wavelength chirp.  相似文献   

9.
An electroabsorption modulator has been monolithically integrated with an extended-cavity laser, which incorporates a Bragg reflector. Actively modelocked at the fundamental cavity resonance frequency of 4.5 GHz, the laser provides a train of 6.3 ps pulses with a centre wavelength of 1544 nm onto which data is encoded by the modulator. This 4.5 Gbit/s single-chip transmitter is suitable for systems employing short optical pulses.<>  相似文献   

10.
An all- npn integrated driver for directly modulating common-cathode vertical-cavity surface-emitting lasers (VCSELs) at high speeds (such as 10 Gb/s) is proposed and experimentally demonstrated. Special biasing techniques allow the output transistors to operate with small collector-emitter voltages while maintaining their fast current-switching capabilities. A current-splitting technique in the output stage minimizes the transients through the bias source and reduces jitter and overshoot.  相似文献   

11.
This paper describes the design and performance of a 10-Gb/s laser diode (LD) transmitter and avalanche photodiode (APD) receiver, both of which are based on GaAs MESFET IC's. The LD transmitter consists of a strained MQW distributed-feedback LD and one chip LD driver IC. The module output power is +4.6 dBm at 10 Gb/s. The APD receiver consists of an InGaAsP/InAl/As superlattice-APD and an IC-preamplifier with the 10-Gb/s receiver sensitivity of -27.4 dBm. As for the LD transmitter, we discuss the optimum impedance-matching design from the viewpoint of high-speed interconnection between LD and driver IC's. As for the APD receiver, the key issue is input impedance design of preamplifier IC, considering noise and bandwidth characteristics. Total performance of the transmitter and receiver is verified by a 10-Gb/s transmission experiment and a penalty-free 10-Gb/s fiber-optic link over 80 km of conventional single-mode fiber is successfully achieved  相似文献   

12.
The effect of the spontaneous emission noise on coherent systems in a multistage semiconductor laser amplifier repeater system is experimentally examined. By appropriate adjustment of the input power level to each amplifier, 546 km FSK transmission of 140 Mbit/s using 10 cascaded amplifiers is demonstrated without power penalty.<>  相似文献   

13.
10-Gb/s transmission and beyond   总被引:1,自引:0,他引:1  
The authors outline obstacles encountered in the development of 10-Gb/s (STM-64, OC-192) systems. Technologies to overcome these obstacles are presented and compared, taking into account real field environments. A perspective on 40-Gb/s systems technologies is also given  相似文献   

14.
Intensity modulated proton-implanted top surface-emitting vertical-cavity InGaAs QW lasers (VCSELs) with a small-signal modulation bandwidth of 12 GHz butt-coupled to multimode fibers are investigated as light source for optical interconnection. At 10-Gb/s pseudorandom data rates the bit-error rate (BER) remains under 10/sup -11/ after transmission over 500 m of graded index multimode fiber. Optimum transmission behavior is achieved for linearly polarized nearly single-mode laser operation with a side-mode suppression of better than 25 dB under modulation. Spectral characterization indicates that linearly polarized single-mode light output is essential for good BER performance.  相似文献   

15.
Electroabsorption modulated lasers (EMLs) exploiting the quantum confined Stark effect need thermoelectric coolers to achieve stable output power levels and dynamic extinction ratios. Temperature-independent operation is reported between 20/spl deg/C and 70/spl deg/C for InGaAlAs-InP-based monolithically integrated 1550-nm EMLs exploiting a shared active area at 40 Gb/s by actively controlling the electroabsorption modulator bias voltage. Dynamic extinction ratios of at least 8 dB and fiber-coupled mean modulated optical power of at least 0.85 mW are obtained over the mentioned temperature range.  相似文献   

16.
Soliton generation and coding are obtained using a novel, and simple tandem integrated electroabsorption (EA) MQW modulator structure. Negligible electrical crosstalk (<40 dB) is obtained due to the integration between the modulators, of an optical amplifier based on the same active layer. This also allowed a very low fibre to fibre insertion loss of 9 dB. The device was operated at 10 Gbit/s  相似文献   

17.
We have experimentally and theoretically investigated the transmission performance of 10-Gb/s electroabsorption modulated lasers (EMLs) due to the overshoot of optical pulses. When a highly negative bias voltage is applied to EMLs, the overshoot becomes larger due to nonlinear transfer curves of EMLs. In order to further understand the overshoot effect of optical pulses from EMLs on transmission performance, we propose a novel and simple EML model based on the frequency response (magnitude and phase) and the transfer curves (P-V and /spl alpha/-V) of EMLs. Although the model does not solve the rate equations and the wave equations, it can accurately predict output pulse shapes and the frequency chirp as well as the transmission performance with reducing simulation time. Using the EML model, we can calculate the overshoot and dispersion power penalty due to modulation bandwidth and group delay difference in 10-Gb/s EMLs. Our results suggest that the overshoot should be considered to accurately predict the transmission performance of 10-Gb/s EMLs.  相似文献   

18.
A silicon germanium (SiGe) receiver IC is presented here which integrates most of the 10-Gb/s SONET receiver functions. The receiver combines an automatic gain control and clock and data recovery circuit (CDR) with a binary-type phase-locked loop, 1:8 demultiplexer, and a 2 7-1 pseudorandom bit sequence generator for self-testing. This work demonstrates a higher level of integration compared to other silicon designs as well as a CDR with SONET-compliant jitter characteristics. The receiver has a die size of 4.5×4.5 mm2 and consumes 4.5 W from -5 V  相似文献   

19.
A laser/modulator driver IC for 10-Gb/s-SONET OC-192-fiber optic transmitters is described. Depending on the user application, the IC is capable of driving more than 100 mA of current into a laser diode or over 50 mA into an electro-absorption or Mach-Zehnder modulator. Rise and fall times below 20 pS are achieved. The driver employs a novel dual-mode actively matched output buffer that provides a dc-coupled back termination of either 25 or 50 Ω. Compared to an output buffer with a resistive termination, this buffer dissipates only half as much power. In addition, the buffer has the the ability to reject external bias and will therefore not load bias sources used to set laser threshold currents and modulator offset voltages. The low power consumption makes the IC most suitable for co-packaging with uncooled lasers and electro-absorption modulators. The driver is fabricated in a 0.25-μm gate length production GaAs PHEMT process with substrate thru vias, thin-film resistors, and MIM capacitors  相似文献   

20.
A four-channel distributed-feedback (DFB) laser array integrated with four heating filaments has been fabricated for high-density wavelength-division-multiplexing systems. The DFB lasers have a threshold current of 4 mA at room temperature. By changing the power in the heater, the wavelength of each laser can be continuously tuned by as much as 5 nm. Therefore, a tunable wavelength spacing anywhere from 1 nm to 2 nm can be achieved. Each laser can operate at 10 Gb/s. However, the bias current has to be increased to avoid the degradation of the eye pattern as the wavelength is thermally tuned over 2 nm. An electric crosstalk of 0.6 dB is measured when two adjacent lasers are modulated at 10 Gb/s simultaneously  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号