首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
The design of a digitally-tunable sixth-order reconfigurable OTA-C filter in a 0.18-μ m RFCMOS process is proposed. The filter can be configured as a complex band pass filter or two real low pass filters. An improved digital automatic frequency tuning scheme based on the voltage controlled oscillator technique is adopted to compensate for process variations. An extended tuning range (above 8:1) is obtained by using widely continuously tunable transconductors based on digital techniques. In the complex band pass mode, the bandwidth can be tuned from 3 to 24 MHz and the center frequency from 3 to 16 MHz.  相似文献   

2.
A reconfigurable multi-mode direct-conversion transmitter(TX) with integrated frequency synthesizer(FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620- 920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a C10:2 dBm peak output power with a C9:5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.  相似文献   

3.
一种用于短距离无线通信的低功耗多频带可配置收发机   总被引:2,自引:2,他引:0  
A reconfigurable multi-mode multi-band transceiver for low power short-range wireless communication applications is presented.Its low intermediate frequency(IF) receiver with 3 MHz IF carrier frequency and the direct-conversion transmitter support reconfigurable signal bandwidths from 250 kHz to 2 MHz and support a highest data rate of 3 Mbps for MSK modulation.An integrated multi-band PLL frequency synthesizer is utilized to provide the quadrature LO signals from about 300 MHz to 1 GHz for the transceiver multi-band application. The transceiver has been implemented in a 0.18μm CMOS process.The measurement results at the maximum gain mode show that the receiver achieves a noise figure(NF) of 4.9/5.5 dB and an input 3rd order intermodulation point(IIP3) of-19.6/-18.2 dBm in 400/900 MHz band.The transmitter working in 400/900 MHz band can deliver 10.2/7.3 dBm power to a 50Ωload.The transceiver consumes 32.9/35.6 mW in receive mode and 47.4/50.1 mW in transmit mode in 400/900 MHz band,respectively.  相似文献   

4.
应用于低中频和零中频DVB调谐器中8阶信道滤波器设计   总被引:2,自引:2,他引:0  
邹亮  廖友春  唐长文 《半导体学报》2009,30(11):115002-9
An eighth order active-RC filter for low-IF and zero-IF DVB tuner applications is presented, which is implemented in Butterworth biquad structure. An automatic frequency tuning circuit is introduced to compensate the cut-off frequency variation using a 6-bit switched-capacitor array. Switched-resistor arrays are adopted to cover different cut-off frequencies in low-IF and zero-IF modes. Measurement results show that precise cut-off frequencies at 2.5, 3, 3.5 and 4 MHz in zero-IF mode, 5, 6, 7 and 8 MHz in low-IF mode can be achieved, 60 dB frequency attenuation can be obtained at 20 MHz, and the in-band group delay agrees well with the simulation. Two-tone testing shows the in-band IM3 achieves -52 dB and the out-band IM3 achieves -55 dB with -11 dBm input power. This proposed filter circuit, fabricated in a SMIC 0.18μm CMOS process, consumes 4 mA current with 1.8 V power supply.  相似文献   

5.
This paper describes a low-pass reconfigurable baseband filter for GSM,TD-SCDMA and WCDMA multi-mode transmitters.To comply with 3GPP emission mask and limit TX leakage at the RX band,the out-of -band noise performance is optimized.Due to the distortion caused by the subthreshold leakage current of the switches used in capacitor array,a capacitor bypass technique is proposed to improve the filter’s linearity.An automatic frequency tuning circuit is adopted to compensate the cut-off frequency variation.Simulation results show that the filter achieves an in-band input-referred third-order intercept point(IIP3) of 47 dBm at 1.2-V power supply and the out-of-band noise can meet TX SAW-less requirement for WCDMA & TD-SCDMA.The baseband filter incorporates -40 to 0 dB programmable gain control that is accurately variable in 0.5 dB steps.The filter’s cut-off frequency can be reconfigured for GSM/TD-SCDMAAVCDMA multi-mode transmitter.The implemented baseband filter draws 3.6 mA from a 1.2-V supply in a 0.13μm CMOS process.  相似文献   

6.
A fifth/seventh order dual-mode OTA-C complex filter for global navigation satellite system receivers is implemented in a 0.18μm CMOS process.This filter can be configured as the narrow mode of a 4.4 MHz bandwidth center at 4.1 MHz or the wide mode of a 22 MHz bandwidth center at 15.42 MHz.A fully differential OTA with source degeneration is used to provide sufficient linearity.Furthermore,a ring CCO based frequency tuning scheme is proposed to reduce frequency variation.The measured results show that in narrow-band mode the image rejection ratio(IMRR)is 35 dB,the filter dissipates 0.8 mA from the 1.8 V power supply,and the out-of-band rejection is 50 dB at 6 MHz offset.In wide-band mode,IMRR is 28 dB and the filter dissipates 3.2 mA.The frequency tuning error is less than±2%.  相似文献   

7.
This paper presents a 4th-order reconfigurable analog baseband filter for software-defined radios.The design exploits an active-RC low pass filter(LPF) structure with digital assistant,which is flexible for tunability of filter characteristics,such as cut-off frequency,selectivity,type,noise,gain and power.A novel reconfigurable operational amplifier is proposed to realize the optimization of noise and scalability of power dissipation.The chip was fabricated in an SMIC 0.13μm CMOS process.The main filter and frequency calibration circuit occupy 1.8×0.8 mm2 and 0.48×0.25 mm2 areas,respectively.The measurement results indicate that the filter provides Butterworth and Chebyshev responses with a wide frequency tuning range from 280 kHz to 15 MHz and a gain range from 0 to 18 dB.An IIP3 of 29 dBm is achieved under a 1.2 V power supply.The input inferred noise density varies from 41 to 133 nV/(Hz)1/2 according to a given standard,and the power consumptions are 5.46 mW for low band(from 280 kHz to 3 MHz) and 8.74 mW for high band(from 3 to 15 MHz) mode.  相似文献   

8.
An analog/digital reconfigurable automatic gain control(AGC) circuit with a novel DC offset cancellation circuit for a direct-conversion receiver is presented.The AGC is analog/digital reconfigurable in order to be compatible with different baseband chips.What’s more,a novel DC offset cancellation(DCOC) circuit with an HPCF(high pass cutoff frequency) less than 10 kHz is proposed.The AGC is fabricated by a 0.18μm CMOS process.Under analog control mode,the AGC achieves a 70 dB dynamic range with a 3 dB-bandwidth larger than 60 MHz.Under digital control mode,through a 5-bit digital control word,the AGC shows a 64 dB gain control range by 2 dB each step with a gain error of less than 0.3 dB.The DC offset cancellation circuits can suppress the output DC offset voltage to be less than 1.5 mV,while the offset voltage of 40 mV is introduced into the input.The overall power consumption is less than 3.5 mA,and the die area is 800×300μm~2.  相似文献   

9.
Interferogram noise reduction is a very important processing step in Interferometric Synthetic Aperture Radar (InSAR) technique. The most difficulty for this step is to remove the noises and preserve the fringes simultaneously. To solve the dilemma, a new interferogram noise reduction algorithm based on the Maximum A Posteriori (MAP) estimate is introduced in this paper. The algorithm is solved under the Total Generalized Variation (TGV) minimization assumption, which exploits the phase characteristics up to the second order differentiation. The ideal noise-free phase consisting of piecewise smooth areas is involved in this assumption, which is coincident with the natural terrain. In order to overcome the phase wraparound effect, complex plane filter is utilized in this algorithm. The simulation and real data experiments show the algorithm can reduce the noises effectively and meanwhile preserve the interferogram fringes very well.  相似文献   

10.
This paper presents a fully integrated 4.8GHz VCO with an invention——symmetrical noise filter technique.This VCO,with relatively low phase noise and large tuning range of 716MHz,is fabricated with the 0.25μm SMIC CMOS process.The oscillator consumes 6mA from 2.5V supply.Another conventional VCO is also designed and simulated without symmetrical noise filter on the same process,which also consumes 6mA current and is with the same tuning.Simulation result describes that the first VCO’ phase noise is 6dBc/Hz better than the latter’s at the same offset frequency from 4.8GHz.Measured phase noise at 1MHz away from the carrier in this 4.8GHz VCO with symmetrical noise filter is -123.66dBc/Hz.This design is suitable for the usage in a phase-locked loop and other consumer electronics.It is amenable for future technologies and allows easy porting to different CMOS manufacturing process.  相似文献   

11.
由小数分频频率合成器中相位累加器与数字一阶△-∑调制器的等效性出发,用ADS软件仿真证实了高阶数字△-∑调制对量化相位噪声的高通整型功能,从而有效地解决了小数分频的杂散问题。最后硬件电路实现了基于△-∑调制的小数分频跳频频率合成器,频率范围为590~1000MHz,在偏离主频10KHz时相噪优于-93.76dBc/Hz,频率分辨率可以小于100Hz,转换时间小于50μs,在跳频频率间隔1MHz时每秒可达2万跳。  相似文献   

12.
This paper proposes a biquad design methodology and presents a baseband low-pass filter for wireless and wireline applications with reconfigurable frequency response (Chebyshev/Inverse Chebyshev), selectable order (1st/3rd/5th), continuously tunable cutoff frequency (1-20 MHz), and adjustable power consumption (3-7.5 mW). A discrete capacitor array coarsely tunes the low-pass filter, and a novel continuous impedance multiplier (CIM) then finely tunes the filter. Resistive/capacitive networks select between the Chebyshev and inverse Chebyshev approximation types. Also, a new stability metric for biquads, minimum acceptable phase margin (MAPM), is presented and discussed in the context of filter compensation and passband ripple considerations. Experimental results yield an IIP3 of 31.3 dBm, a THD of -40 dB at 447 mVpk, diff input signal amplitude, and a DR of 71.4 dB. The filter's tunable range covers frequencies from 1 MHz to 20 MHz. In Inverse Chebyshev mode, the filter achieves a passband group delay variation less than plusmn2.5%. The design is fabricated in 0.13 mum CMOS, occupies 1.53 mm2 , and operates from a 1-V supply.  相似文献   

13.
Fully reconfigurable transceivers are required to answer the low-power high flexibility demand of future mobile applications. This paper presents a fully reconfigurable Gm-C biquadratic low-pass filter which offers a large range of both frequency and performance flexibility. First, a design approach is proposed focusing on linearity properties by extending Volterra analysis from circuit to architectural level in order to optimize the filters performance. Secondly, a novel switching technique is discussed that allows a bandwidth tuning over more than two orders of magnitude starting from 100 kHz up to 20 MHz and which uses only gate transistor capacitance. Fundamental to this technique is that the power consumption can be traded with the desired performance. Furthermore, the quality factor, noise level and linearity are all programmable over a very wide range. The biquad is processed in a 0.13-mum CMOS technology and operates at different supply voltages down to less than 0.8 V. For a 1.2-V supply, the filter consumes between 103 muA (100 kHz) and 11.85 mA (20 MHz) for a low noise setting around 25 to 35 muVrms integrated over the filter bandwidth achieving an third-order intermodulation intercept point of 10 dBVp.  相似文献   

14.
The design of a digitally-tunable sixth-order reconfigurable OTA-C filter in a 0.18-μm RFCMOS process is proposed.The filter can be configured as a complex band pass filter or two real low pass filters.An improved digital automatic frequency tuning scheme based on the voltage controlled oscillator technique is adopted to compensate for process variations.An extended tuning range(above 8:1) is obtained by using widely continuously tunable transconductors based on digital techniques.In the complex band pas...  相似文献   

15.
Two versions of a baseband block composed by a 8-bit current-steering DAC and a fourth-order low-pass reconstruction filter are realized in a 0.13-$muhbox m$CMOS technology to be embedded in multistandard wireless transmitters. In order to satisfy the specifications of WLAN IEEE 802.11a/b/g, UMTS, and Bluetooth standards, the proposed devices can be digitally programmed, adjusting the DAC conversion frequency and the low-pass filter cut-off frequency. For the WLAN case, the DAC operating frequency and the filter bandwidth are set to 100 MHz and 11 MHz, respectively, for the UMTS case, they are equal to 50 MHz and 2.5 MHz, and for the Bluetooth case, they are equal to 50 MHz and 1 MHz. The first device is reconfigurable between WLAN and UMTS, and the second one between WLAN and Bluetooth. The two fabricated devices operate from a single 1.2-V supply voltage and occupy a 0.8$hbox mm^2$and 0.7$hbox mm^2$die area, respectively. The power consumption is optimized according to the operation mode and is 8 mW in WLAN mode, 8.4 mW in UMTS mode, and 5.4 mW in Bluetooth mode. For all the considered standards, the measured OIP3 is larger than 28 dBm, while the SFDR is 54 dB for WLAN, 61 dB for UMTS, and 63 dB for Bluetooth.  相似文献   

16.
A low-power CMOS reconfigurable analog-to-digital converter that can digitize signals over a wide range of bandwidth and resolution with adaptive power consumption is described. The converter achieves the wide operating range by (1) reconfiguring its architecture between pipeline and delta-sigma modes; (2) varying its circuit parameters, such as size of capacitors, length of pipeline, and oversampling ratio, among others; and (3) varying the bias currents of the opamps in proportion to the converter sampling frequency, accomplished through the use of a phase-locked loop (PLL). This converter also incorporates several power-reducing features such as thermal noise limited design, global converter chopping in the pipeline mode, opamp scaling, opamp sharing between consecutive stages in the pipeline mode, an opamp chopping technique in the delta-sigma mode, and other design techniques. The opamp chopping technique achieves faster closed-loop settling time and lower thermal noise than conventional design. At a converter power supply of 3.3 V, the converter achieves a bandwidth range of 0-10 MHz over a resolution range of 6-16 bits, and parameter reconfiguration time of twelve clock cycles. Its PLL lock range is measured at 20 kHz to 40 MHz. In the delta-sigma mode, it achieves a maximum signal-to-noise ratio of 94 dB and second and third harmonic distortions of 102 and 95 dB, respectively, at 10 MHz clock frequency, 9.4 kHz bandwidth, and 17.6 mW power. In the pipeline mode, it achieves a maximum DNL and INL of ±0.55 LSBs and ±0.82 LSBs, respectively, at 11 bits, at a clock frequency of 2.6 MHz and 1 MHz tone with 24.6 mW of power  相似文献   

17.
A sensing technique using a voltage-mode architecture, noise-shaping modulator, and digital filter (a counter) is presented for use with cross-point MRAM arrays and magnetic tunnel junction memory cells. The presented technique eliminates the need for precision components, the use of calibrations, and reduces the effects of power supply noise. To obviate the effects of cell-to-cell variations in the array, a digital self-referencing scheme using the counter is presented. Measured experimental results in a 180-nm CMOS process indicate an RMS sensing noise of 20 /spl mu/V for a 5-/spl mu/s sense time. Further increases in sense time are shown to increase the signal-to-noise ratio. The current used by the sense amplifier and counter was measured as 10 /spl mu/A when running at 100 MHz or 10 mA when 1000 sense amplifiers are used with a memory subarray having 1000 bitlines.  相似文献   

18.
A low pass (LP) and complex band pass (CBP) reconfigurable analog baseband circuit for software-defined radio (SDR) receivers is presented. It achieves 1–15 MHz LP bandwidth, 2–8 MHz CBP bandwidth and 0–36 dB gain range with 1 dB step. Nulling-resistor Miller feed-forward (NRMFF) differential-mode compensation, passive left half-plane (LHP) zero common-mode compensation and Quasi-Floating Gate (QFG) technique are proposed to improve the high frequency performance and driving capability of the embedded fully differential operational amplifier (Op-Amp). The analog baseband circuit has been implemented in 65 nm CMOS. It achieves 15.2 dB m/27.1 dB m IB/OB-IIP3, −2 dB m IP1dB and 71 dB m IIP2 while consuming 3.6–9.1 mW from a 1.2 V power supply and 0.75 mm2 chip area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号