首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
胡平  赵福宇  严舟  李冲 《核动力工程》2012,33(1):134-137
以快堆核电厂的核燃料循环过程及核燃料循环模型为基础,利用注销法对2种核燃料循环方式进行经济性计算和分析;同时,也将快堆燃料循环经济性与压水堆(PWR)燃料"一次通过"的经济性进行对比。按目前价格水平计算,PWR"一次通过"的核燃料循环方式比快堆核燃料循环模式的经济性好,但随着天然铀价格的上涨以及燃料后处理技术水平的进步,快堆核燃料循环费用有望达到或低于PWR"一次通过"的核燃料循环费用。  相似文献   

2.
AP1000燃料管理方案经济性分析   总被引:1,自引:0,他引:1  
核电厂采取的燃料管理方案对经济性结果影响很大。对于同一核电技术,考虑某一设计方案的变化,有助于度量该技术单一要素的影响。AP1000机组设计了两种不同的首循环,两种不同的平衡循环,以及数种相应的过渡循环。本文通过分析不同循环的特点,计算了各种设计方案的经济性,同时分析了燃料费用相关要素对经济性对比结果的影响,旨在帮助决策者选择经济合理的燃料方案。  相似文献   

3.
核燃料循环产业发展的最佳状态是消耗最少的核资源,产生最好的经济效益,造成最小的环境危害。本研究从铀资源消耗、废物排放、循环成本三个方面,对开路热堆循环、闭式热堆循环、快热联合循环三种核燃料循环方案的综合效益进行比较。研究表明,在铀资源利用方面,与开路热堆循环比较,闭式热堆循环节省天然铀22.3%,快热联合循环节省天然铀65.2%,闭式热堆循环铀资源利用率提高28.7%,快热联合循环铀资源利用率提高165.5%,闭式热堆循环节省分离功12.5%,快热联合循环节省分离功60.8%。增加后处理环节的闭式核燃料循环能大幅度节约天然铀资源并减少能耗,显著提高铀资源利用率。在经济性方面,与开路热堆循环比较,闭式热堆循环成本平均提高6%,快热联合循环成本平均降低27.3%。开路热堆循环经济性优势随着天然铀价格降低而增强,闭式循环经济性优势随着后处理价格越低而增强,快热联合循环的经济性始终优于闭式热堆循环。本研究确定了三种循环间的经济平衡点,可根据不同天然铀价格和后处理价格比较三种循环方案经济性的优劣,选取经济可行的核燃料循环方案。在环境保护方面,与开路热堆循环比较,闭式热堆循环的废物产生量减少84.1%,体积减少87.7%,快热联合循环的废物产生量减少95.4%,体积减少99.0%。闭式循环的环境效益明显优于开路循环,快热联合循环优势最大。研究结论,快热联合循环的综合效益最好,是核燃料循环产业发展的最佳选择。  相似文献   

4.
热管反应堆通过高温热管从堆芯直接导出热量,系统设计本身就极为简化,较为适宜作为小型核电源的技术选型。燃料经济性是反应堆技术路线选型的重要依据,为详细研究热管反应堆设计对其燃料循环经济性影响,本文初步建立热管反应堆燃料经济性影响因素分析模型,以eVinci反应堆为例,开展了燃料循环经济性影响因素探索研究,获得了总体方案功率规模、堆芯运行温度等因素对热管堆燃料经济性的影响变化趋势。结果表明受燃料价格、铀装量、富集度等综合影响,热管反应堆燃料经济性相对较好的优选热功率规模区间在约1~5 MW。提高堆芯运行温度可使燃料经济性大幅提升,经济性最佳功率区间向高功率规模扩展。   相似文献   

5.
本文通过平准化发电成本的方法,以燃料循环作为研究对象,对行波堆一次通过式燃料循环和二次通过式燃料循环的经济性进行了研究,并选取10个重要的经济和技术参数进行成本敏感性分析。研究结果表明,行波堆的平准化发电成本低于现有压水堆和快堆,其中,行波堆一次通过式燃料循环方式的平准化发电成本最低。敏感性分析表明,贴现率、燃耗深度、隔夜价和反应堆热效率是影响行波堆经济性最重要的参数,而燃料价格和废物处置的价格由于占成本的比例较小,对行波堆经济性的影响不大。  相似文献   

6.
秦山第二核电厂燃料管理策略改进的经济性分析   总被引:2,自引:0,他引:2  
秦山第二核电厂经过几个燃料循环后,为了提高经济性,准备改进燃料管理策略.因此在燃料管理策略改进前,应先进行经济性评估.从经济性角度,比较了年度1/4换料与18个月换料这两种燃料管理策略的优劣.  相似文献   

7.
概述钍燃料循环目前的发展状况。介绍了钍燃料循环在各种反应堆型中的应用,归纳了钍燃料循环的优势及其不足。指出目前钍燃料循环发展中的主要困难是乏燃料的后处理及经济性问题,阐述了国外的后处理尝试方法。  相似文献   

8.
CANDU堆先进燃料循环的展望   总被引:10,自引:6,他引:4  
谢仲生 Bocza.  P 《核动力工程》1999,20(6):560-565,575
介绍CANDU堆的天然铀燃料循环以及最近开发的适合未来近期的先进燃料循环。高中子经济性,不停堆换料以及简单的燃料束设计,使得CANDU堆具有非常优良的燃料循环灵活性和多样性。  相似文献   

9.
田湾核电站3、4号机组正在考虑使用TVS-2M组件来提高经济性。本文使用KASKAD程序包,对田湾核电站从首循环起使用TVS-2M组件进行研究设计,给出了改进型的燃料管理方案。对采用和未采用TVS-2M组件的两种燃料管理方案进行了经济性分析。分析结果显示,采用TVS-2M组件可显著提高电站经济性。  相似文献   

10.
针对压水堆装载MOX燃料以及引入干式贮存燃料循环情景,建立了燃料循环成本经济性计算模型,分别对基准情景、装载MOX燃料情景和引入干式贮存燃料循环情景进行具体计算,并就天然铀价格、贴现率对3种燃料循环模式的平准化发电成本的影响进行了敏感性分析,计算结果能为分析压水堆装载MOX燃料以及引入干式贮存经济可行性提供参考。  相似文献   

11.
The structure of the nuclear fuel cycle, consisting of the technological stages of uranium production, refining, enrichment, fabrication of nuclear fuel, and reprocessing of the spent fuel for reuse of the fissioning materials, is examined. Supplying fuel includes supplying fuel for Russian nuclear power plants, propulsion and research reactors, export of fuel for nuclear power plants and research reactors constructed according to Russian designs, export of low-enriched uranium and fuel for nuclear power plants constructed according to foreign designs. The explored deposits of natural uranium, the estimated stores of uranium in reserve deposits, and warehoused stores will provide nuclear power with uranium up to 2030 and in more distant future with the planned rates of development. The transition of nuclear power plants to a new fuel run will save up to 20% of the natural uranium. The volume of reprocessing of spent fuel and reuse of 235U makes it possible to satisfy up to 30% of the demand for resources required for Russian nuclear power plants. The most efficient measure of the resource safety of Russian nuclear power is implementation of an interconnected strategy at each stage of the nuclear fuel cycle.  相似文献   

12.
The system of 100% natural uranium burning with once-through fuel cycle is defined as the Perfect Burning Reactor System (PBRS). This kind of nuclear system can be expected to have some good characteristic such as resource efficiency, radiotoxicity reduction, proliferation and nuclear safety. Therefore, the feasibility of the concept is studied in this paper. The preliminary results show that the system of 100% natural uranium burning with once-through fuel cycle is physically possible with a plenty supply of external neutron, and that the system demands no activities concerning with fuel cycle such as uranium enrichment, fuel fabrication, spent fuel reprocessing and radioactive waste treatment. The study also quantitatively clarifies the external neutron source strength, the nuclear criticality safety, the demanded accelerator performance and the energy balance. In addition, the more precise analysis is requested for well understanding and improving the characteristic and economical rationality of the system.  相似文献   

13.
High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexi-bility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nu-clear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (-22.5%), increase the energy output (-41%), decrease the quantity of spent fuels to be disposed (-2/3) and lower the cost of nuclear poower, Because of the inherent flexibility of nuclearfuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modifica-tion of the reactor core structure and operation mode.It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.  相似文献   

14.
This study quantifies the credits of beryllium and uranium which are used as the raw materials for BeO-UO2 nuclear fuel by analyzing the influence of their credits on the nuclear fuel cycle cost was analyzed, where the credit was defined as the value of raw materials recovered from spent fuel and the raw materials that were re-cycled. The credits of beryllium and uranium at 60 MWD/kg burn-up were –0.22 Mills/kWh and –0.14 Mills/kWh, respectively. These findings were based on the assumption that the optimal mixing proportion of beryllium in the BeO-UO2 nuclear fuel is 4.8 wt%. In sum, the present study verified that the credits of beryllium and uranium in relation to BeO-UO2 nuclear fuel are significant cost drivers in the cost of the nuclear fuel cycle and in estimating the nuclear fuel cycle of the reprocessing option for spent nuclear fuels.  相似文献   

15.
《Annals of Nuclear Energy》2005,32(2):151-162
Purex co-processing of spent LWR fuel is investigated. In purex co-processing, uranium and plutonium in spent fuel are processed and recovered together as a single stream, while in standard purex reprocessing uranium and plutonium are obtained as separate streams. A two-step (co-decontamination and co-stripping) flow sheet for purex co-processing is devised; concentrations, recoveries and decontamination factors are calculated; and methods to co-convert uranium–plutonium nitrate to mixed oxide are reviewed. A closed nuclear fuel cycle in which at no point uranium and plutonium are separated from each other is reached.  相似文献   

16.
根据我国核电发展现状和中长期发展规划及中长期(2030、2050)发展战略研究,假设2050年前我国压水堆核电发展规模,基于压水堆乏燃料后处理,回收的钚做成MOX燃料放入压水堆中使用,MOX燃料只使用1次的循环模式,进行核能发展情景研究。基于压水堆可装载30%比例MOX燃料的已有研究结果,考虑我国主要的两种压水堆堆型M310和AP1000,进行压水堆核燃料循环分析。利用核能发展情景动态分析程序DESAE-2,给出了不同情景模式下天然铀需求量、乏燃料累计量等。结果表明:至2050年,B1和B2模式较A模式分别节省天然铀4.1万t和2.9万t。  相似文献   

17.
2020年前我国核燃料循环情景初步研究   总被引:5,自引:3,他引:5  
根据我国核电现状和中短期发展规划,对2020年前我国核电规模提出了三种预测方案,并根据各种方案对压水堆电站的核燃料循环情景进行了计算。重点研究了压水堆核电所需的铀资源、分离功,卸出的乏燃料以及乏燃料中Pu和次要锕系元素(MA)的产生量。  相似文献   

18.
乏燃料后处理是核燃料循环的关键环节,制约核电的可持续发展。借助于加速器驱动先进核能系统(ADANES)提供的高通量、硬能谱的外源中子,其乏燃料后处理只需除去乏燃料中的挥发性裂变产物和影响次锕系元素嬗变的中子毒物,长寿命的次锕系元素Np、Am、Cm可与二氧化铀一起转化为新的燃料元件在加速器驱动燃烧器中燃烧、嬗变、增殖和产能。基于此,本课题组提出了加速器驱动的乏燃料后处理及再生制备的技术路线,包括高温氧化粉化与挥发、选择性溶解分离和燃料再生制备。本文主要介绍了近几年本课题组在这三方面所取得的一些成就,希望能为加速器驱动先进核能系统的乏燃料后处理提供基础数据。  相似文献   

19.
The success of the three stage Indian nuclear energy program is inter-linked with the establishment of an efficient closed fuel cycle approach with recycling of both fissile and fertile components of the spent fuel to appropriate reactor systems. The Indian reprocessing journey was started way back in 1964 with the commissioning of a plant based on PUREX technology to reprocess aluminum clad natural uranium spent fuel from the research reactor CIRUS. After achieving the basic skills, a power reactor reprocessing facility was built to reprocess spent fuel from power reactors. Adequate design and operating experience was gained from these two plants for mastering the reprocessing technology. The first plant, being the maiden venture, based on indigenous technology had to undergo many modifications during its operation and finally needed refurbishment for continued operation. Decommissioning and decontamination of this plant was carried out meticulously to allow unrestricted access to the cells for fresh installation. A third plant was built for power reactor spent fuel reprocessing to serve as a design standard for future plants with the involvement of industry. Over the years, spent fuel reprocessing based on PUREX technology has reached a matured status and can be safely deployed to meet the additional reprocessing requirements to cater to the expanding nuclear energy program. Side by side with the developments in the spent natural uranium fuel reprocessing, irradiated thoria reprocessing is also perused to develop THOREX into a robust process. The additional challenges in this domain are being addressed to evolve appropriate technological solutions. Advancements in the field of science and technology are being absorbed to meet the challenges of higher recovery combined with reduced exposure and environmental discharges.  相似文献   

20.
It is shown that there is promise in using the uranium product obtained by reprocessing spent nuclear fuel from RBMK reactors as a non-initial fuel source for thermal reactors. A technical path for spent nuclear fuel from RBMK reactors is proposed: radiochemical reprocessing and obtaining oxides of recycled uranium. Oxides of the category RBMK-poor are packed and then stored in a near-surface storage facility; oxides of the category RBMK-rich are fluoridated, and UF6 is fed into separation production for additional enrichment to the required content of 235U. Additional advantages of recycled RBMK uranium as a source of non-initial 235U are the low content of 232U and the relatively low activity of spent fuel, which simplifies its reprocessing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号