首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral insulin delivery has received the most attention in insulin formulations due to its high patient compliance and, more importantly, to its potential to mimic the physiologic insulin secretion seen in non-diabetic individuals. However, oral insulin delivery has two major limitations: the enzymatic barrier that leads to rapid insulin degradation, and the mucosal barrier that limits insulin’s bioavailability. Several approaches have been actively pursued to circumvent the enzyme barrier, with some of them receiving promising results. Yet, thus far there has been no major success in overcoming the mucosal barrier, which is the main cause in undercutting insulin’s oral bioavailability. In this review of our group’s research, an innovative silica-based, mucoadhesive oral insulin formulation with encapsulated-insulin/cell penetrating peptide (CPP) to overcome both enzyme and mucosal barriers is discussed, and the preliminary and convincing results to confirm the plausibility of this oral insulin delivery system are reviewed. In vitro studies demonstrated that the CPP-insulin conjugates could facilitate cellular uptake of insulin while keeping insulin’s biologic functions intact. It was also confirmed that low molecular weight protamine (LMWP) behaves like a CPP peptide, with a cell translocation potency equivalent to that of the widely studied TAT. The mucoadhesive properties of the produced silica-chitosan composites could be controlled by varying both the pH and composition; the composite consisting of chitosan (25 wt-%) and silica (75 wt-%) exhibited the greatest mucoadhesion at gastric pH. Furthermore, drug release from the composite network could also be regulated by altering the chitosan content. Overall, the universal applicability of those technologies could lead to development of a generic platform for oral delivery of many other bioactive compounds, especially for peptide or protein drugs which inevitably encounter the poor bioavailability issues.  相似文献   

2.
3.
In view of the analogous transmembrane function to cell penetrating peptides, guanidine group was incorporated into chitosan by chemical modification to enhance the transfection performance of chitosan vectors. Guanidinylated chitosan (GCS) was shown to be well soluble in neutral aqueous solution. The interaction between GCS with plasmid DNA was characterized by agarose retardation experiment and ethidium bromide displacement assay. GCS formed more stable complexes with DNA under physiological pH than chitosan. The transfection efficiency of GCS was evaluated employing COS‐7 cell line—GCS polyplexes demonstrated higher transfection efficiency and lower cytotoxicity relative to chitosan. The optimum efficiency of GCS was achieved in the vicinity of the critical complexing ratio. The results of flow cytometry indicated that guanidinylation promoted an eightfold increase in the cell uptake. The study revealed that guanidinylated chitosan is a promising candidate as an effective nonviral vector for in vivo gene delivery. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Ir(III)-porphyrins are a relatively new group of phosphorescent dyes that have potential for oxygen sensing and labeling of biomolecules. The requirement of two axial ligands for the Ir(III) ion permits simple linkage of biomolecules by a one-step ligand-exchange reaction, for example, using precursor carbonyl chloride complexes and peptides containing histidine residue(s). Using this approach, we produced three complexes of Ir(III)-octaethylporphyrin with cell-penetrating (Ir1 and Ir2) and tumor-targeting (Ir3) peptides and studied their photophysical properties. All of the complexes were stable and possessed bright, long-decay (unquenched lifetimes exceeding 45 μs) phosphorescence at around 650 nm, with moderate sensitivity to oxygen. The Ir1 and Ir2 complexes showed positive staining of a number of mammalian cell types, thus demonstrating localization similar to endoplasmic reticulum and ATP- and temperature-independent intracellular accumulation (direct translocation mechanism). Their low photo- and cytotoxicity allows intracellular oxygen to be probed.  相似文献   

5.
The dynamic operating behaviour of the direct methanol fuel cell (DMFC) is governed by several physico-chemical phenomena which occur simultaneously: double layer charging, electrode kinetics, mass transport inside the porous structures, reactant distributions in the anode and cathode flowbeds etc. Therefore it is essential to analyse the interactions of these phenomena in order to fully understand the DMFC. These phenomena were initially analysed independently by systematic experiments and model formulations. Electrode kinetics were determined by fitting models of varying complexity to electrochemical impedance spectroscopy (EIS) measurements. Reaction intermediates adsorbed on the catalyst seem to play a key role here. To describe mass transport across the DMFC a one-dimensional model was formulated applying the generalised Maxwell–Stefan equations for multi-component mass transport and a Flory–Huggins model for the activities of mobile species inside the membrane (PEM). Also swelling of the PEM as well as heat production and transport were considered. Finally, the anode flowbed was analysed by observing flow patterns in different flowbed designs and measuring residence time distributions (RTDs). Detailed CFD models as well as simpler CSTR network representations were used to compare to the experimental results. Even the simpler models showed good agreement with the experiments. After these investigations the results were combined: the electrode kinetics model was implemented in the mass transport model as well as in the CSTR network flowbed model. In both cases, good agreement, even to dynamic experiments, was obtained.  相似文献   

6.
简述了煤直接液化机理,详细介绍了煤直接液化动力学模型及其研究方法,包括单组分分析模型、多组分分析模型及煤液化过程的分段处理研究。通过对煤直接液化动力学模型研究进展的综述,认为近年来煤直接液化动力学的主要发展方向之一是通过分段处理,并根据多组分"集总"反应模型来处理煤直接液化动力学模型。  相似文献   

7.
Cell-penetrating peptides (CPPs) have become widely used vectors for the cellular import of molecules in basic and applied biomedical research. Despite the broad acceptance of these molecules as molecular carriers, the details of the mode of cellular internalization and membrane permeation remain elusive. Within the last two years endocytosis has been demonstrated to be a route of uptake shared by several CPPs. These findings had a significant impact on CPP research. State-of-the-art cell biology is now required to advance the understanding of the intracellular fate of the CPP and cargo molecules. Owing to their presumed ability to cross lipid bilayers, CPPs also represent highly interesting objects of biophysical research. Numerous studies have investigated structure-activity relationships of CPPs with respect to their ability to bind to a lipid bilayer or to cross this barrier. Endocytosis route only relocates the membrane permeation from the cell surface to endocytic compartments. Therefore, biophysical experiments are key to a mechanistic molecular understanding of the cellular uptake of CPPs. However, biophysical investigations have to consider the molecular environment encountered by a peptide inside and outside a cell. In this contribution we will review biophysical and cell-biology data obtained for several prominent CPPs. Furthermore, we will summarize recent findings on the cell-penetrating characteristics of antimicrobial peptides and the antimicrobial properties of CPPs. Peptides of both groups have overlapping characteristics. Therefore, both fields may greatly benefit from each other. The review will conclude with a perspective of how biophysics and cell biology may synergize even more efficiently in the future.  相似文献   

8.
Synthetic nucleic acid interactors represent an exciting research field due to their biotechnological and potential therapeutic applications. The translation of these molecules into drugs is a long and difficult process that justifies the continuous research of new chemotypes endowed with favorable binding, pharmacokinetic and pharmacodynamic properties. In this scenario, we describe the synthesis of two sets of homo-thymine nucleopeptides, in which nucleobases are inserted in a peptide structure, to investigate the role of the underivatized amino acid residue and the distance of the nucleobase from the peptide backbone on the nucleic acid recognition process. It is worth noting that the CD spectroscopy investigation showed that two of the reported nucleopeptides, consisting of alternation of thymine functionalized L-Orn and L-Dab and L-Arg as underivatized amino acids, were able to efficiently bind DNA and RNA targets and cross both cell and nuclear membranes.  相似文献   

9.
直接甲醇燃料电池参比电极的设计与稳定性   总被引:1,自引:1,他引:0       下载免费PDF全文
毛庆  孙公权  赵新生  杨少华  辛勤 《化工学报》2006,57(11):2699-2704
提出了用于原位测量直接甲醇燃料电池(DMFC)极化的参比电极的结构设计,并考察了电解质的润湿程度对参比电极的电位及其电位稳定性的影响.结果表明:在可逆氢电极(RHE)作为参比电极的DMFC中,RHE的电位随电解质润湿程度的增加而降低,其电位的稳定性主要取决于其表面状态的稳定性.提出要获得电位稳定及测量准确的极化曲线,RHE处的电解质应处于对侧液态水润湿的状态,且电极表面要有适量、稳定流速的氢气.  相似文献   

10.
叶丁丁  廖强  朱恂  丁玉栋  石泳  田鑫 《化工学报》2008,59(2):309-315
针对微型直接甲醇燃料电池,将阳极流场板简化为规则结构的多孔介质,运用多孔介质理论建立了包括流场板在内的阳极传输模型。模型考虑了阳极流道内液体饱和度沿流动方向的变化、催化层的厚度以及甲醇渗透,计算并讨论了阳极流道内液体饱和度的分布和流量对电池电流密度的影响,分析了阳极过电位对甲醇浓度分布和电池性能的影响以及质子交换膜内的传质特性。  相似文献   

11.
家蝇抗菌肽抑菌活性及其稳定性研究   总被引:1,自引:0,他引:1  
通过体外抑菌实验,采用纸片扩散法对家蝇抗菌肽的抑菌性进行定性研究。试验用菌有金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白色念珠菌和黑曲霉菌。在对家蝇抗菌肽抗菌谱研究的基础上,进一步用肉汤稀释法(试管法)定量测定其最低抑菌浓度(MIC),并对其稳定性进行研究。结果表明,家蝇抗菌肽对金黄色葡萄球菌、绿脓杆菌和大肠杆菌3种细菌有较好的抑制作用,而对白色念珠菌和黑曲霉没有明显的抑制作用,对金黄色葡萄球菌、绿脓杆菌和大肠杆菌最低抑菌浓度(MIC)分别为0.156 mg/mL、0.312 5 mg/mL和6.25 mg/mL。另外,对其稳定性进行讨论,结果表明,家蝇抗菌肽的稳定性良好。  相似文献   

12.
采用热重分析,研究了抗氧剂种类及用量对聚甲基丙烯酸甲酯(PMMA)热氧化稳定性的影响,并采用Kis-singer、Flynn-Wall-Ozawa和Flynn法对其热氧化降解行为进行了动力学分析。结果表明,抗氧剂1010、1076、702和BHT的用量为0.5‰时就能够显著提高PMMA热氧化稳定性,使其起始热分解温度提高70℃左右,而抗氧剂用量进一步提高对改善PMMA的热稳定性意义不大;动力学分析表明,抗氧剂的加入能够提高PMMA质量损失率小于30%时的热降解活化能,而热分解后期由于降解温度高于抗氧剂熔点,抗氧剂气化逸出,抗氧剂不能有效提高PMMA后期热降解活化能,未能达到提高PMMA整体热稳定性的目的。  相似文献   

13.
In this work, experiments have been performed to measure the detonation velocities and characteristic cell sizes in the dimethyl ether (DME) fuel-oxygen mixtures. Equilibrium calculation and detailed chemical kinetics modeling of the ZND structure of detonations are also carried out to investigate the detonation characteristics of DME. Detonation cell sizes estimated using a correlation model by Ng et al. [Ng HD, Ju Y, Lee JHS. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int J Hydrogen Energy 2007;32:93-99] are in good agreement with experimental data. It is found that the cell size values for DME-oxygen mixtures are comparable to those of propane or ethane fuels. At low initial pressure, double cell like detonation structures have been observed in all equivalence ratios considered in this study. Chemical kinetic results reveal that DME oxidation under detonation environment exhibits similarly a two-stage heat release process inside the reaction zone. This effect may play a significant role in the existence and scaling of the multi-cell detonation pattern in stoichiometric and fuel-rich DME mixtures. On the lean side, multiple cells appear to be caused primarily by the strong intrinsic instability of the unsteady detonation front. The present experimental results and chemical kinetic sensitivity analyses provide some basic information to assess detonation hazards in DME-based mixtures.  相似文献   

14.
The thermal decomposition of pure perspex and a mixture of 50% perspex and 50% poly(ethylene terephthalate; PET) was carried out between 295 and 325°C using a thermogravimetric analyser (TGA) in air and nitrogen (N2) atmosphere. The weight losses of decomposition products were measured during these experiments. The thermal degradation process is slower in inert atmosphere than air, where oxidation reaction expedites the decomposition process. Kinetic rate constants (k), pre‐exponential factor (A) and activation energy (E) for both pure prespex and a blend of perspex/PET were calculated for both air and N2 conditions. The thermal degradation process followed a third‐order reaction in air and second‐order in N2. A second‐order (n = 2) model for the pyrolytic process based on simultaneous reactions was developed using experimental data for pure and blend. The pyrolytic products are gases, liquids, waxes, aromatics and char, which can be ultimately used as raw material and fuel in various applications. It is important to note that the addition of PET to perspex was found to suppress/inhibit the decomposition of perspex compared with pure perspex. Pre‐exponential factor (A) and activation energy (E) values support such an observation. © 2012 Canadian Society for Chemical Engineering  相似文献   

15.
Cell-penetrating peptides (CPPs) are powerful tools to transport cell-impermeable cargoes into the cytoplasm without damaging the cell membrane. The vast majority of these peptides described to date share several features, among others, they are positively charged at physiological pH. In several cases a clear correlation between an increasing number of positive charges and internalization properties has been reported. Here, we describe what, to the best of our knowledge, is the first anionic CPP. This new compound SAP(E) internalizes into a range of cell lines with good efficiency and it shows low toxicity. We also report on the internalization mechanism. The discovery of this new class of CPP opens the way to the intracellular delivery of new molecular cargoes.  相似文献   

16.
以1,1,3,3-四甲基二苯基二硅氧烷为封端剂,八甲基环四硅氧烷与甲基苯基环硅氧烷混合物为共聚单体,在阴离子催化剂作用下合成了二甲基苯基硅氧基封端的聚(二甲基-甲基苯基)硅氧烷共聚物。采用非等温TG技术,在惰性气氛和5.0、10.0、15.0和40.0 K min 1线性升温速率条件下,考察了共聚物非等温热降解机理及反应动力学,采用Friedman-Reich-Levi、Flynn-Wall-Ozawa和Kissinger等方法对非等温动力学数据进行分析,所得平均表观活化能分别为113.64、115.69和145.80 kJ mol 1。采用等转化率法确定出共聚物热分解反应符合Avrami-Erofeev方程,反应机理为随机成核和随后生长。采用Crane和Doyle方法研究了不同升温速率对反应级数、活化能和指前因子的影响,结果表明降解反应为一级反应,反应活化能介于152.46~183.13 kJ mol 1之间,指前因子介于4.25×109~4.02×109s 1。同时采用等温TG技术得到失重5%和10%条件下的寿命方程,对共聚物的寿命进行了预测。  相似文献   

17.
18.
Interchain packing and unit cell of syndiotactic polypropylene   总被引:3,自引:0,他引:3  
We have examined the general validity and applicability of our newly proposed alternative interchain packing and unit cell for syndiotactic polypropylene, in relation to the long-standing original structural model. Whereas our recent evidence arose from single crystals in ultra-thin films, we now demonstrate the correctness of our structure for polycrystalline thick films, for bulk specimens obtained directly from the polymerization and for uniaxially oriented specimens. This removes any possible ambiguity that our structure might represent a special case arising from thin-film, substrate or epitaxial effects, or from thermal or mechanical treatments. We also remove any questions about chemical defects as originators of our alternative structure by demonstrating that our specimens have among the very highest syndiotactic contents, ordered-sequence distributions, melting temperatures, heats of fusion and crystallinities in the literature. Finally, by re-examining earlier X-ray evidence from other studies, we find consistent confirmation of our proposed structure. This structure consists of chains with a (t2g2)2 conformation in a cell similar to the generally adopted one, but with close packing on (010) planes rather than C-centering. The molecular origin of our alternative structure arises from the helical handedness of the molecules. We show that these favour antichiral packing and that this requires close packing on (010) planes. The earlier C-centred unit cell requires exclusively isochiral packing and is not seen in a regular manner in any of our samples but only as a defect structure, with specimens grown at the highest temperatures being essentially defect free.  相似文献   

19.
20.
An unstructured model has been developed to predict microbial growth based on carbon or nitrogen substrate consumption, ammonia or carbon dioxide production and proton transfer. The model has been validated for batch cultures of Geotrichum candidum and Penicillium camembertii growing on peptones and peptones + lactate based media. The contributions of the considered kinetics to biosynthesis and cellular maintenance can be deduced from this model. The nitrogen source (peptones) was mainly utilized in biosynthesis: for P camembertii growing on peptones, 86% of the metabolized peptones. G candidum metabolized peptones preferentially to lactate as a carbon source, resulting in lactate utilization by a maintenance mechanism during the stationary state. In contrast, P camembertii, which metabolized fewer amino acids as a carbon source, utilized lactate mainly for biosynthesis (83% of the consumed lactate). Most (up to 71%) of the ammonia released was produced by deamination of amino acids utilized as both carbon and nitrogen sources by growth‐associated metabolism. With peptones, proton transfer resulted from ammonia release, most likely as a result of the growth‐associated mechanism, as supported experimentally (55–58% of the released ammonia for both microorganisms). The contribution of lactate to proton transfer resulted in 76% of protons exchanged by a growth‐associated mechanism during P camembertii growth. For total carbon dioxide production, the contributions of the energy supplies for biosynthesis and cell maintenance were similar; except during P camembertii growth in the presence of lactate (65% of growth‐associated CO2 production). © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号