首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micro-packed bed reactors (μPBRs) have the advantages of high heat and mass transfer efficiency and excellent safety, and they have been successfully applied to hydrogenation and oxidation reactions. However, the study of gas–liquid flow regimes in the μPBR, which is essential for the mass transfer modeling and reactor scale-up, is still insufficient due to the limitation of micro-scale and complexity of capillary force. In this work, the flow regimes in the two-dimensional μPBR were systematically studied by visual method utilizing a high-performance camera. Four typical flow regimes and characteristics were captured, and flow regime transition was revealed. Effects of gas and liquid superficial velocities, liquid physical properties, and particle sizes on liquid spreading areal fraction and pressure drop were investigated. Flow regime transition correlation of churn flow and pseudo-static flow in the μPBR was provided for the first time based on the summary of the current and previous published results.  相似文献   

2.
Hydrodynamics and mass transfer of gas–liquid flow such as pressure drop, liquid holdup, and gas–liquid mass-transfer coefficient in micropacked bed reactors (μPBRs) with metal foam packing are investigated with an automated platform. Parametric studies are conducted varying gas and liquid superficial velocities, pore diameters of foam packing, and liquid physical properties. Experimental results show that μPBRs with foam packing have comparative mass transfer rate and 10 times lower pressure drop compared to the microparticles. The values of mass-transfer coefficient for three types of foam packing in μPBRs are 1–2 orders of magnitude larger than those in large-scale trickle bed reactors with foam packing. Furthermore, empirical correlations of pressure drop, liquid holdup, and gas–liquid mass-transfer coefficient in μPBRs with foam packing are proposed and the predicted values are found to be in good agreement with the experimental values.  相似文献   

3.
Rotating packed beds (RPBs) are ideal candidates for CO2 removal from offshore natural gas due to their good mass transfer performance and significant volume savings. This article proposes an Eulerian multi-fluid approach to simulate the gas–liquid flow in RPBs. Three new multiphase drag force models are constructed based on single-phase drag force models for wire mesh packings. Based on the Eulerian multi-fluid approach, a new RPB simulation framework is developed. The predicted results using the new simulation framework with the new drag force models are compared with the experimental data. When using the Kołodziej model and the modified Kołodziej model, the predicted overall liquid holdup shows good agreement with the experimental data with errors less than 20%. In addition, the pressure drop predicted by these three models are reasonable compared with the experimental data. This work lays a foundation for RPB simulation of gas–liquid flow using Eulerian multi-fluid approach.  相似文献   

4.
Pressure drop, residence time distribution, dispersive behavior, liquid holdup, and mass transfer performance of gas–liquid flow in micropacked bed reactors (μPBRs) with different contact angles (CA) of particles are studied. The value of pressure drop for three types of beads can be obtained: copper beads (CA = 88.1°) > stainless steel beads (CA = 70.2°) > glass beads (CA = 47.1°). The liquid axial dispersion coefficient is 1.58 × 10−6 to 1.07 × 10−5 m2/s for glass beads and copper beads, which is smaller than those of trickle bed reactors. The liquid holdup of 400 μm copper beads is larger than that of 400 μm glass beads. The ratio of effective interfacial area enhancement is evaluated up to 55% for big contact angle beads compared with the hydrophilic glass beads. In addition, correlations of pressure drop, liquid holdup, and effective interfacial area in μPBRs with different wettability beads are developed and predicted values are in agreement with the experimental data.  相似文献   

5.
The droplet generation mechanism in the asymmetrically enhanced step T-junction remains unknown, especially for the transition stage from dripping to jetting regimes. In this work, the droplet generation mechanism was systematically investigated in a modified step T-junction by modulating a large flowrate range and altering different interfacial tensions. We found that under different fluid regimes, both the capillary number and flow rate ratio of continuous and dispersed phase showcase completely different impacts over droplet generation. In dripping regime, the interfacial tension, which was controlled by changing the surfactant concentration, dominated the formation mechanism when the surfactant concentration was found below micelle concentration. In jetting regime, our experimental results showed that the influence of the surfactant concentration on the size of generated droplets was rather negligible while the flow rate ratio of continuous and dispersed phase indeed determined such a parameter. In the dripping-jetting transition stage, an increase of droplet size was observed despite the increase of continuous phase flow. After reaching a peak, the droplet dimension started to decrease with the increase of continuous phase flow as expected. To the best for our knowledge, it is the first study to report generation mechanism in modified step T-junction from dripping to jetting regimes.  相似文献   

6.
Process design and scale-up require a fundamental understanding of the hydrodynamics of gas–solid flow in the circulating fluidized bed flue gas desulfurization (CFB-FGD) reactor although the CFB system has been widely used in flue gas desulfurization and flue gas cleaning processes. The hydrodynamics in the CFB-FGD reactor model was investigated by pressure measurements and specially designed sampling probe based on three dimensionless groups for practicable similarity of industrial CFB-FGD process. The results show that the pressure drop in the venturi section is predominant as high as 60% of the total pressure drop and the total pressure drop significantly increases with the increasing external solid circulating rates at the same superficial gas velocity. Moreover, the measurements of radial solid mass fluxes show that the flow pattern in the CFB-FGD reactor is a typical core–annulus flow and this flow structure prevails until the top of the reactor. Reflux ratios are used to quantitatively evaluate the internal solid reflux in the reactor and the values in the low section of the reactor are much higher than those in the upper section.  相似文献   

7.
Gas–liquid–liquid three-phase slug flow was generated in a glass microreactor with rectangular microchannel, where aqueous slugs were distinguished by relative positions to air bubbles and organic droplets. Oxygen from bubbles reacted with resazurin in slugs, leading to prominent color changes, which was used to quantify mass transfer performance. The development of slug length indicated a film flow through the corner between bubbles and the channel wall, where the aqueous phase was saturated with oxygen transferred from bubble body. This film flow results in the highest equivalent oxygen concentration within the slug led by a bubble and followed by a droplet. The three-phase slug flow subregime with alternate bubble and droplet was found to benefit the overall mass transfer performance most. These results provide insights into a precise manipulation of gas–liquid–liquid slug flow in microreactors and the relevant mass transfer behavior thereof.  相似文献   

8.
The influences of concurrent flow of air–Newtonian and non-Newtonian liquid systems on pressure drop and on its reduction in downflow trickle bed reactor are presented in the present work. The pressure drop at different flow regimes in the trickle bed is enunciated by the dynamic interaction model based on the framework of the momentum balance. From the analysis, it is observed that the non-ideality factor of bubble flow regime is higher than that of pulse and trickle flow regimes which may influence efficiency of the reactor. The present work also concludes that the percentage of pressure reduction increases with increasing the surfactant concentration. However there is a limitation of change of concentration, above which no more reduction can be obtained. The present study may be useful for further understanding and modelling of multiphase reactor with non-Newtonian liquid, which has great industrial applications.  相似文献   

9.
The temperature distribution in a bench-scale fixed bed Fischer–Tropsch reactor using Co-based catalyst was investigated under conditions of 2 MPa and 458 K at various syngas partial pressures and space velocities. The single-tube reactor had a diameter of 0.05 m, which is representative of the diameters used in industrial applications. With a special designed temperature measurement, the detailed temperature distribution in a bench-scale reactor was reported for the first time. The changes of maximum temperature in the bed and hot spot region were discussed at different N2 flow rate and gas hourly space velocity. A 2D pseudo-homogeneous fixed bed reactor model was developed using ANSYS Fluent. A position-dependent heat-transfer coefficient, which considered more accurate in temperature prediction, was applied. The model was validated against both the reaction results and the measured temperatures. The inferred properties within the reactor were analyzed to give insight as to how to increase the reactor production capacity.  相似文献   

10.
This article discusses the use of a multi-cyclone separator, which is a simplified form of a degassing hydrocyclone, in the separation of sweeping nitrogen bubbles and dissolved oxygen from water. The motion of the nitrogen bubbles and mass transfer of dissolved oxygen is discussed. It was observed that the Sauter mean diameter and gas volume in the swirling flow region as well as the total gas holdup increased as the volumetric ratio of gas to liquid flow increased. Almost all bubbles were found to exit through the gas outlet, indicating optimum performance of the bubble-separation process. The multi-cyclone separator was found to achieve good performance for the mass transfer of oxygen from water to nitrogen. This work is important in predicting the destination of bubbles and dissolved gas in swirling flow. © 2018 American Institute of Chemical Engineers AIChE J, 65: 215–223, 2019  相似文献   

11.
In this work, the flow hydrodynamic characteristics and the mass transfer performance of immiscible fluids in the packed microchannels are investigated experimentally. Water–kerosene system is used for visually identifying the flow hydrodynamic characteristics in PMMA microchannels, and water–succinic acid–n-butanol is chosen for investigating mass transfer performance in stainless steel microchannels. Quartz sand micro-particles are used as packing particles. In packed microchannels, high liquid–liquid dispersions can be obtained, and the diameter of droplets produced in the packed microchannel can be even less than 10 μm. It ensures better mixing performance and larger effective interfacial area of two immiscible fluids, and improves the mass transfer performance obviously. Compared to the extraction efficiency (46–61%) in the non-packed microchannel, it can reach 81–96% in the packed microchannel. The effects of packing length, micro-particle size on liquid–liquid dispersions and extraction efficiency are investigated. The pressure drop and the specific energy dissipation in the packed microchannels are also discussed.  相似文献   

12.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   

13.
In contrast to the concurrent mixer-settler, the interaction between the mixing and settling chambers have to be taken into account in the simulation of the countercurrent mixer-settler, and no work has been reported for this equipment. In this work, a three-phase flow model based on the Eulerian multiphase model, coupled with a sliding mesh model is proposed for a countercurrent mixer-settler. Based on this, the dispersed phase distribution, flow pattern, and pressure distribution are investigated, which can help to fill the gap in the operation mechanism. In addition, the velocity vector distribution at the phase port shows an intriguing phenomenon that two types of vectors with opposite directions are distributed on the left and right sides of the same plane, which indicates that the material exchange in the mixing and settling chambers is simultaneous. Analysis of this variation at this location by a fast Fourier transform (FFT) method reveals that it is mainly influenced by the mixing chamber and is consistent with the main period of the outlet flow fluctuations. Therefore, by monitoring the fluctuation of the outlet flow and then analyzing it by the FFT method, the state of the whole tank can be determined, which makes it promising for the design of control systems for countercurrent mixer-settlers.  相似文献   

14.
The hysteresis of gas-liquid mass transfer rate and the corresponding radial liquiddistribution in a trickle bed reactor are measured to provide evidence for the correlation between thesetwo behaviors.Experimental results indicate that the hysteresis of gas-liquid mass transfer originatesfrom the nonuniformity of the hydrodynamic state of gas-liquid flow and the radial maldistributionof local k_(gia) corresponds very well to the radial maldistribution of liquid flow in the bed.The localliquid flow rate is also found to be nonuniform in the azimuthal direction.In view of maldistributedliquid flow even in the pulsing flow regime,the conventional plug flow model seems oversimplifiedfor describing the behavior of a trickle bed.  相似文献   

15.
An inverse liquid–solid circulating conventional fluidized bed (I-CCFB) is realized by injecting particles from the top of a conventional liquid–solid fluidized bed (0.076 m ID and 5.4 m height) that is operated in a newly developed circulating conventional fluidization regime located between the conventional and circulating fluidization regimes. The I-CCFB can achieve a higher solids holdup compared to both conventional and circulating liquid–solid fluidized beds. A new parameter, the bed intensification factor, is defined to quantify the increased solids holdup observed with external solids circulation. The Richardson–Zaki equation is shown to be applicable to the I-CCFB regime and can be used to correlate the slip velocity and solids holdup, both of which increase with the solids circulation rate. A new flow regime map is presented, including the I-CCFB and a variety of other liquid–solid fluidized beds.  相似文献   

16.
17.
Micro-packed bed reactor (μPBR) presents great potential in the field of multiphase reactions due to the features of safety and high efficiency. However, the deeper cognition of mass transfer needs to be taken into consideration that is the foundation of reactor design. In this work, local and global gas–liquid mass transfer in the μPBR were studied utilizing a noninvasive colorimetric technique. In reactor level, the qualitative and quantitative comparisons were conducted; in particle level, liquid flow and mass transfer textures were assessed for the first time. The diversities of local mass transfer characteristics from temporal and spatial dimensions were obtained, and the heterogeneity of local and global mass transfer was revealed. The predicted correlations of in μPBR with churn flow and pseudo-static flow were established with deviations generally within ±18%. This study contributes to improve the understanding of mass transfer and points out the process intensification direction of μPBR.  相似文献   

18.
The lateral flow of gas–powder through a packed bed in a cold model is studied to understand the flow and holdup behaviour of powder in the presence of a cavity, nozzle (tuyere) protrusion, and decreasing gas condition, a system used in the ironmaking blast furnace. Experiments conducted in the current study included a two-dimensional (2D) slot-type packed bed. A previously published mass balance and elutriation velocity concept formed the basis for accurately quantifying the static and dynamic powder holdups. Experiments conducted under different conditions such as powder size and flux, gas flow rate, and packed particle density and size resulted in quantifying the powder holdups. The pressure drop in both horizontal and vertical directions is studied in all two-phase flow experiments. The formation of the static holdup with time in the packed bed is studied. The reproducibility of the experiments was confirmed. The static holdup inside the packed bed at various locations along the vertical direction (i.e., height) is also quantified. The static holdup correlation developed based on experimental data resulted in a 95% confidence interval. Static powder holdup increases with a decrease in the superficial gas velocity, an increase in the size of the powder particle, and powder flux. Dynamic holdup also showed a similar trend.  相似文献   

19.
《Chemical engineering science》2001,56(21-22):5945-5953
Gas–liquid flow in packed towers is commonly encountered in the chemical and processing industry. A continuum model is developed based on the volume-and-time averaging of multiphase flows in isotropic rigid porous media/packed columns. Closures are presented for the evaluations of the extra surface/intrinsic phase integral terms. Both inertia and inter-phase interactions are retained in the volume averaged (Navier–Stokes) equations. These governing equations are solved for fully-developed axi-symmetric single and gas–liquid two phase flows in highly porous packed towers. It is found that the dispersion term is present in the continuity equation as well as the momentum equations. Numerical simulations with the models show that the volume-and-time averaged equations can predict the velocity, phase hold-up and pressure drop quite well for up to the loading point for gas–liquid counter-current flows.  相似文献   

20.
Bubble size distribution and bubble ellipticity were measured as a function of axial position in a vertically oriented semi-batch gas–liquid Taylor vortex reactor with varying gas flow rate and inner cylinder rotation speed producing axial Reynolds numbers in the range 23.8–119 and azimuthal Reynolds numbers up to 4.2 × 104. The mean bubble size increases monotonically with axial distance from the bottom of the reactor at the location of gas injection. The functional form of the growth of the mean bubble size with axial position depends upon the azimuthal Reynolds number. Specifically, when the azimuthal Reynolds number is less than 1.3 × 104, the mean bubble size increases linearly with axial distance from the bubble injection point. In contrast, for azimuthal Reynolds numbers greater than this critical value, the mean bubble size increases with axial distance in a sigmoidal manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号