首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
无线网络中的分组调度算法   总被引:8,自引:1,他引:7  
宋舰  李乐民 《通信学报》2003,24(3):42-48
探讨了将有线网络的分组调度算法引入无线网络需要改进的事项,分析了公平排队算法,建立了一个基本的无线分组调度模型,并综述了一些目前存在的无线分组调度算法。  相似文献   

3.
Fair scheduling in wireless packet networks   总被引:2,自引:0,他引:2  
Fair scheduling of delay and rate-sensitive packet flows over a wireless channel is not addressed effectively by most contemporary wireline fair-scheduling algorithms because of two unique characteristics of wireless media: (1) bursty channel errors and (2) location-dependent channel capacity and errors. Besides, in packet cellular networks, the base station typically performs the task of packet scheduling for both downlink and uplink flows in a cell; however, a base station has only a limited knowledge of the arrival processes of uplink flows. We propose a new model for wireless fair-scheduling based on an adaptation of fluid fair queueing (FFQ) to handle location-dependent error bursts. We describe an ideal wireless fair-scheduling algorithm which provides a packetized implementation of the fluid mode, while assuming full knowledge of the current channel conditions. For this algorithm, we derive the worst-case throughput and delay bounds. Finally, we describe a practical wireless scheduling algorithm which approximates the ideal algorithm. Through simulations, we show that the algorithm achieves the desirable properties identified in the wireless FFQ model  相似文献   

4.
To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedia transmission in wireless networks and the deficiency of the existing packet scheduling algorithms are analyzed. Then the model of the QoS-guaranteed packet scheduling (QPS) algorithm of high speed downlink packet access (HSDPA) and the cost function of packet transmission are designed. The calculation method of packet delay time for wireless channels is expounded in detail, and complete steps to realize the QPS algorithm are also given. The simulation results show that the QPS algorithm that provides the scheduling sequence of packets with calculated values can effectively improve the performance of delay and throughput.  相似文献   

5.
In this paper, we study the Interference-Aware Broadcast Scheduling problem, where all nodes in the Euclidean plane have a transmission range and an interference range equal to r and α r for α ? 1, respectively. Minimizing latency is known to be NP-Hard even when α = 1. The network radius D, the maximum graph distance from the source to any node, is also known to be a lower bound.We formulate the problem as integer programs (IP) and optimally solve moderate-size instances. We also propose six variations of heuristics, which require no pre-processing of inputs, based on the number of receivers gained by each additional simultaneous transmitting node. The experimental results show that the best heuristics give solutions that exceed the optimal solutions by only 13–20%. Further, an O(αD) schedule is proven to exist yielding an O(α) approximation algorithm.  相似文献   

6.
Fawaz  Hassan  Lahoud  Samer  El Helou  Melhem 《Wireless Networks》2020,26(6):3967-3983
Wireless Networks - Contemporary progress in telecommunication technologies have made full-duplex wireless communications feasible. The latter promise to double the capacity of wireless networks by...  相似文献   

7.
Cooperative communication (CC) allows multiple nodes to simultaneously transmit the same packet to the receiver so that the combined signal at the receiver can be correctly decoded. Since the CC can reduce the transmission power and extend the transmission coverage, it has been considered in minimum energy routing protocols to reduce the total energy consumption. However, previous research on cooperative routing only focuses on minimizing the total energy consumption from the source node to the destination node, which may lead to the unbalanced energy distribution among nodes. In this paper, we aim to study the impact of cooperative routing on balancing the energy distribution among nodes. By introducing a new routing scheme which carefully selects cooperative relay nodes and assigns their transmission power, our cooperative routing method can balance the remaining energy among neighboring nodes to maximize the lifetime of the network. Simulation results demonstrate that the proposed cooperative routing algorithm significantly balances the energy distribution and prolongs the lifetime of the network.  相似文献   

8.
In this article, we introduce a novel link layer cooperation technique in noisy wireless networks to improve overall system throughput and reliability, and to reduce the cost of retransmission and energy consumption. Under a cluster-based network design, Chase combining (Chase, IEEE Transactions on Communications 33(5):385–393, 1985) is used together with FEC to improve the link layer reliability. This approach is different from how combining is used in the conventional hybrid ARQ, which is in a sequential way. The analytical results and the simulations show that with the cooperation of nodes in a clustering network, the link reliability will be greatly improved with the same power consumption. We also show that not only transmission power is greatly reduced, but also the aggregate power consumption for a successful transmission and reception.  相似文献   

9.
The design of media access control (MAC) protocol for wireless sensor networks (WSNs) with the idea of cross layer attracts more and more attention. People can improve the MAC protocol by obtaining certain information regarding the network layer and physical layer. This article synthesizes and optimizes certain cross-layer protocols which have existed. On the basis of the routing, topology information in the network layer, and transmission power information in the physical layer, the time slot assignment algorithm has been improved in the MAC layer. By using geographical adaptive fidelity algorithm (GAF) to divide the grids, controlling of transmission power and scheduling the work/sleep duty cycle for sensor nodes, a new MAC protocol has been proposed to decrease energy consumption and enlarge the lifetime of WSNs. Simulation results show that the MAC protocol functions well.  相似文献   

10.
The mobile multimedia applications have recently generated much interest in wireless ad hoc networks with supporting the quality-of-service (QoS) communications. The QoS metric considered in this work is the reserved bandwidth, i.e., the time slot reservation. We approach this problem by assuming a common channel shared by all hosts under a TDMA (Time Division Multiple Access) channel model. In this paper, we propose a new TDMA-based QoS multicast routing protocol, namely hexagonal-tree QoS multicast protocol, for a wireless mobile ad hoc network. Existing QoS routing solutions have addressed this problem by assuming a stronger multi-antenna model or a less-strong CDMA-over-TDMA channel model. While more practical and less costly, using a TDMA model needs to face the challenge of radio interference problems. The simpler TDMA model offers the power-saving nature. In this paper, we propose a new multicast tree structure, namely a hexagonal-tree, to serve as the QoS multicasting tree, where the MAC sub-layer adopts the TDMA channel model. In this work, both the hidden-terminal and exposed-terminal problems are taken into consideration to possibly exploit the time-slot reuse capability. The hexagonal-based scheme offers a higher success rate for constructing the QoS multicast tree due to the use of the hexagonal-tree. A hexagonal-tree is a tree whose sub-path is a hexagonal-path. A hexagonal-path is a special two-path structure. This greatly improves the success rate by means of multi-path routing. Performance analysis results are discussed to demonstrate the achievement of efficient QoS multicasting.  相似文献   

11.
This paper presents the dynamic reservation protocol for supporting variable-rate data services on time-division multiple-access based wireless networks. It allows a large number of data terminals to access data applications by sharing a reserved data-carrier. Through dynamic reservation data terminals can get their needed radio channels for uplink transmission without contention. The protocol performance is evaluated by queuing analysis and verified by computer simulation  相似文献   

12.
Aggregation convergecast scheduling in wireless sensor networks   总被引:3,自引:0,他引:3  
We consider the problem of scheduling in wireless sensor networks for the purposes of aggregation convergecast. We observe that existing schemes adopt essentially a two phase approach, consisting of, first, a tree construction and, second, a scheduling phase. Following a similar approach, we propose two new improvements, one to each of the two phases. Starting with a new lower bound on the schedule length, we make use of it in the tree construction phase. The tree construction phase consists of solutions to instances of bipartite graph semi-matchings. The scheduling phase is a weight-based priority scheme that obeys dependency (tree) and interference constraints. Our extensive experiments show that, overall, our proposed solution not only outperforms all previously proposed solutions in terms of schedule length, but it also significantly extends the network’s lifetime.  相似文献   

13.
Quality of service (QoS) has been always controversial in resource shared networks. Scheduling as a packet prioritizing mechanism at Data Link Layer (DLL) contributes to QoS guarantee provisioning significantly. In this paper, a novel packet scheduler is developed in wireless cellular networks. The proposed scheme provides QoS-guaranteed service for the applications running on the sensor nodes in all the three aspects of QoS, i.e. data rate, packet loss and packet delay with regard to jitter simultaneously. We establish a three-dimensional space with certain basis vectors for QoS and introduce the efficient point of performance in terms of QoS provisioning in that space. Then we develop a generalized metric, the QoS-deviation, which is the Euclidean distance between the QoS work point of flows and the QoS efficient point in the proposed space. Based on this metric, a novel scheduling approach, namely AQDC, is designed which makes it possible to tune the trade-off between QoS provisioning and throughput optimization in an adaptive manner depending on the current Cell QoS-deviation level (CDL). Furthermore, we also develop another scheduler, namely ARTC, which is the residual-time version of the AQDC scheduler. Finally, a QoS-deviation-based CAC policy will be introduced which can be applied to all schedulers without any consideration about their structure and can be employed in cellular packet switched networks.  相似文献   

14.
In wireless multihop networks, communication between two end-nodes is carried out by hopping over multiple wireless links. However, the fact that each node has to transmit not only its own traffic, but also traffic on behalf of other nodes, leads to unfairness among the communication rates of the nodes. Traditional Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) based media access control does not work satisfactory in a multihop scenario, since an intended target of a communication may be subject to mutual interference imposed by concurrent transmissions from nodes, which cannot directly sense each other, thus causing unfair throughput allocation. Although Time Division Multiple Access (TDMA) seems to be a more promising solution, careful transmission scheduling is needed in order to achieve error-free communication and fairness. Several algorithms may be found in the literature for scheduling TDMA transmissions in wireless multihop networks. Their main goal is to determine the optimal scheduling, in order to increase the capacity and reduce the delay for a given network topology, though they do not consider the traffic requirements of the active flows of the multihop network or fairness issues. In this paper, we propose a joint TDMA scheduling/load balancing algorithm, called Load-Balanced-Fair Flow Vector Scheduling Algorithm (LB-FFVSA). This algorithm schedules the transmissions in a fair manner, in terms of throughput per connection, taking into account the communication requirements of the active flows of the network. Simulation results show that the proposed algorithm achieves improved performance compared to other solutions, not only in terms of fairness, but also in terms of throughput. Moreover, it was proved that when a load balancing technique is used, the performance of the scheduling algorithm is further improved.  相似文献   

15.
Scheduling algorithms play an important role for TDMA-based wireless sensor networks. Existing TDMA scheduling algorithms address a multitude of objectives. However, their adaptation to the dynamics of a realistic wireless sensor network has not been investigated in a satisfactory manner. This is a key issue considering the challenges within industrial applications for wireless sensor networks, given the time-constraints and harsh environments. In response to those challenges, we present SAS-TDMA, a source-aware scheduling algorithm. It is a cross-layer solution which adapts itself to network dynamics. It realizes a trade-off between scheduling length and its configurational overhead incurred by rapid responses to routes changes. We implemented a TDMA stack instead of the default CSMA stack and introduced a cross-layer for scheduling in TOSSIM, the TinyOS simulator. Numerical results show that SAS-TDMA improves the quality of service for the entire network. It achieves significant improvements for realistic dynamic wireless sensor networks when compared to existing scheduling algorithms with the aim to minimize latency for real-time communication.  相似文献   

16.
Jin  Xi  Xu  Huiting  Xia  Changqing  Wang  Jintao  Zeng  Peng 《Wireless Networks》2018,24(8):3205-3219
Wireless Networks - Industrial wireless sensor networks have been widely deployed in many industrial systems. The main communication paradigm of such systems, known as convergecast, is to converge...  相似文献   

17.
Grouping and partner selection in cooperative wireless networks   总被引:11,自引:0,他引:11  
Various results to date have demonstrated the advantages of one or several relay nodes assisting transmissions in a wireless network. In many practical scenarios, not all nodes in the network are simultaneously involved in every transmission; therefore, protocols are needed to form groups or subsets of nodes for the purposes of cooperation. We consider this problem in the context of regenerative nodes and non-altruistic cooperation (all nodes have data of their own to transmit). For a network-wide diversity advantage, the protocol must provide each transmitting node with enough "partners" that can decode its message with high-enough probability. Assuming that the nodes cannot communicate their control decisions (distributed scenario), and that each node chooses to help n other nodes, we point out a simple, static selection strategy that guarantees diversity n+1 for all transmissions. We then consider centralized control strategies and study the additional gains that arise from a central control, under various amounts of information being available to the central controller  相似文献   

18.
Power allocation for cooperative relaying in wireless networks   总被引:7,自引:0,他引:7  
Power allocation strategies are developed for amplify-and-forward cooperative relaying networks in fading channels. The average signal-to-noise ratio (SNR) and outage performances are optimized in some sense by maximizing the sum and product, respectively, of the average SNR of the direct link and an upper bound on the SNR of the relay link. The power allocation strategies require knowledge of only the mean strengths of the channels.  相似文献   

19.
Distributed cooperative MAC for multihop wireless networks   总被引:2,自引:0,他引:2  
This article investigates distributed cooperative medium access control protocol design for multihop wireless networks. Cooperative communication has been proposed recently as an effective way to mitigate channel impairments. With cooperation, single-antenna mobile terminals in a multi-user environment share antennas from other mobiles to generate a virtual multipleantenna system that achieves more reliable communication with a higher diversity gain. However, more mobiles conscribed for one communication inevitably induces complex medium access interactions, especially in multihop wireless ad hoc networks. To improve the network throughput and diversity gain simultaneously, we investigate the issues and challenges in designing an efficient MAC scheme for such networks. Furthermore, based on the IEEE 802.11 DCF, a cross-layer designed cooperative MAC protocol is proposed. The MAC scheme adapts to the channel condition and payload length.  相似文献   

20.
Cooperative broadcast aims to deliver a source message to a locally connected network by means of collaborating nodes. In traditional architectures, node cooperation has been at the network layer. Recently, physical layer cooperative schemes have been shown to offer several advantages over the network layer approaches. This form of cooperation employs distributed transmission resources at the physical layer as a single radio with spatial diversity. In decentralized cooperation schemes, collaborating nodes make transmission decisions based on the quality of the received signal, which is the only parameter available locally. In this case, critical parameters that influence the broadcast performance include the source/relay transmission powers and the decoding threshold (the minimum signal-to-noise ratio (SNR) required to decode a transmission). We study the effect of these parameters on the number of nodes reached by cooperative broadcast. In particular, we show that there exists a phase transition in the network behavior: if the decoding threshold is below a critical value, the message is delivered to the whole network. Otherwise, only a fraction of the nodes is reached, which is proportional to the source transmit power. Our approach is based on the idea of continuum approximation, which yields closed-form expressions that are accurate when the network density is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号